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Modelling reveals theeffect of climateand
land use change on Madagascar’s
chameleons fauna
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The global biodiversity crisis is generated by the combined effects of human-induced climate change
and land conversion.Madagascar is one of theWorld’smost renewed hotspots of biodiversity. Yet, its
rich variety of plant and animal species is threatened by deforestation and climate change. Predicting
the future ofMadagascar’s chameleons, in particular, is complicated by their ecological rarity, making
it hard to tell which factor is the most menacing to their survival. By applying an extension of the
ENphylo species distribution model algorithm to work with extremely rare species, we find that
Madagascar chameleons will face intense species loss in the north-western sector of the island. Land
conversionby humanswill drivemost of the loss, andwill intersect in a complex, nonlinearmannerwith
climate change.We find that some30%of theMadagascar’s chameleonsmay lose in the future nearly
all their habitats, critically jeopardizing their chance for survival.

The current biodiversity crisis is elicited by the combined effects of climate
change and the other negative consequences deriving from human eco-
nomic activities1–3. These effects are sopenetrating thatmost scholars agree a
sixth mass extinction is in fact underway4,5. The intensity of the ongoing
extinction wave varies across taxonomic groups and geography, being
ostensibly more severe among both the largest and smallest-bodied terres-
trial vertebrates4,6,7 and in tropical and subtropical regions5,8. With its
extraordinarily diverse fauna exposed to intense human disturbance
(mainly via land use change and deforestation) Madagascar stands out as
one of the worst-hit regions in the world9–12. Predicting the future of bio-
diversity on this large island is complicated. The rapidly expanding network
of protected areas may buffer extinction risk in unpredictable ways,
depending on the availability of space and corridors left by humans to the
species tracking their habitats in thewake of climate change9,13,14. The effects
of climate change and land use conversion are not necessarily additive, as
some species may even expand their habitats under the anticipated warmer
temperatures, whereas the impact of land use conversion ismostly expected
to be detrimental15,16. Moreover, producing solid bioclimatic models that
can be projected to the future to assess where the habitats will be suitable for
rare species is difficult16–18. The problem with modelling uncommon taxa is
particularly sensitive in regions with high levels of endemism and narrow-
ranged species like Madagascar9,12,15. Although a number of solutions were
provided in the past to address the problemof rarity inmodelling19,20 at least
10datapoints per species are usually requiredunder such approaches, which

translates to geographic range sizes no less than 100 km2 even with a fine-
grained, 10 × 10 km gridded cell study design. This figure is larger, for
instance, than the geographic range size of one fifth ofMadagascar reptiles21

and means that particularly rare species are usually excluded from studies
addressing the future distribution of the biota (e.g. refs. 17,19,22–25).
Unsurprisingly, the 10 datapoints limit was applied in modelling the
expected future distribution of Madagascar’s plants16 and reptiles17 and an
even larger (20) datapoint limit was used to model typically narrow-ranged
Madagascar’s chameleons23. To solve this ‘rare species modelling paradox’26

we recently proposed a new algorithm, named ENphylo27, which takes
advantage of the strong phylogenetic signal in species climatic preferences28

to infer the presumed climatic niche of rare species, and then provides
habitat suitability models for them by intersecting the phylogenetically-
imputed niche with the few observational datapoints available. ENphylo
proved tobe particularly accurate inmodelling species forwhich as fewas 10
to 20 observational datapoints where available, and outcompeted similar
algorithmswithin this range27.Here, by usingMadagascar’s chameleons as a
model, we expanded ENphylo to work with even rarer species, pushing
modelling down to two observational datapoints only. The study system is
ideal, at 95 taxonomically defined,mostly endemic species21,23,Madagascar’s
chameleons are exceptionally diverse, represent a long and complex bio-
geographic history9,29,30 and yet they are mostly infrequent, with some
30 species having range size smaller than 1000 km2 21. This implies pre-
dicting their future distribution is problematic and further complicated by
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the uncertainty derived by the complex dynamics of Madagascar’s land-
scapes and socioeconomic growth9,29,31. AlbeitMadagascar’s protected areas
are expanding13 and include at least in part the geographic range of some
97%of the threatened vertebrate species9, the island ismartyrised bydecades
of deforestation, which erased nearly one half of its forest cover32 and still
proceeds at a rate >80 kha/year33. In the 2000 to 2019 interval, the fraction of
ecosystemservices value generatedbyMadagascar forests decreasedof some
3%while its total values increased by 7%, because of land use conversion to
agriculture mainly at the expense of the forests31, where most of the cha-
meleon biodiversity occurrs23,34. To assess how the combined effects of
future climate change and land use change on Madagascar’s chameleon
diversity, we modelled the potential future distribution of Madagascar’s
chameleons with ENphylo, including most of the rarest, under different
scenarios of global warming and land use change, and tested how these
factors will interact with each other in influencing their survival and dis-
tribution.Wemodelled the effects between climate and land use changes in
terms of additive, agonistic or synergistic interactions, testing whether and
where their expected contributions are expected to impinge on Mada-
gascar’s chameleon fauna.

Results
Wemodelled 134 chamaeleonid species under different SDMalgorithms. In
particular, 25 out 56 Madagascar’ chameleons were modelled under
ENphylo. Fifteen out of 56 were modelled via ESM, and 16 more were
eventually modelled by the model ensemble of MaxEnt, RF and GLM
algorithms.Overall, we built 45model predictions for eachChamaeleonidae
species combining the three binarization thresholds, the three GCMs, and
the two mild and severe scenarios for both climate and LULC, for a total of
1620 (45 maps × 56 species) predictive maps.

We assessed the effect of spatial autocorrelation by quantifying its
amount in ensemble model residuals by means of Moran’s I correlograms.
According to this analysis, the averageMoran’s I value among all the species
is equal to−0.13 (sd = 0.06), with only 14% of significant replicates. These
results indicate an overall negligible effect of spatial autocorrelation on
models.

Since evaluation metrics can provide misleading results when quan-
tifying the accuracy of models calibrated on sample size <10 presences35, we
reported the ENphylo performances without considering themodels related
to the species with <10 occurrences. Under this filtering, ENphylo achieved
fair-to-excellent predictive performances with an AUC value averaged
among the modelled species equal to 0.918 (sd = 0.106), an average TSS
equal to 0.703 (sd = 0.166), and an average Boyce index equal to 0.394
(sd = 0.122). It is worth nothing, though, that model selection (i.e., phylo-
geny selection) was implemented by selecting the replicate with the highest
AUC value in ENphylo, meaning that TSS and Boyce values might be
underestimated.

The other approaches led to equally robust model performances:
averaged AUC = 0.953 (sd = 0.033), averaged TSS = 0.871 (sd = 0.086), and
average Boyce index = 0.827 (sd = 0.067) for the ESMs, while averaged
AUC= 0.964 (sd = 0.033), averaged TSS = 0.864 (sd = 0.100), and averaged
Boyce index = 0.965 (sd = 0.04) for traditional SDMs.

Futureprojections showed large loss andgainareas forChamaeleonidae
species in different regions of Madagascar (Fig. 1, Supplementary Figs. 1–2).
Themagnitudeof the species loss/gain estimates increased/decreasedpassing
from the mild to severe future scenarios (Table 1). The impact of future
LULC change for both loss and gain dynamics seems relevant at large spatial
scale, whereas future climate predictions suggest an important role at local
scale (Fig. 1, Supplementary Figs. 1–2). As for the interaction type, the “only
LULC” effect has the highest percentage for both gain and loss dynamics,
whereas the synergic effect has the lowest value. The role of antagonistic
interaction is relevant for species loss only (Fig. 2, Table 2).

Discussion
Madagascar is a hotspot of biodiversity, hosting a great variety of terrestrial
tetrapods and plants unique to the island12. This rich and diversified biota is

facing serious threats posed by humans via overexploitation of the natural
landscape and species, and by human-driven climate change9. These
activities are prolonging a pattern of extinction initiated by the first human
colonizers who eradicated the island’s megafauna36–38. Despite protected
areas now cover 10.4% of the country and encompass, at least in part, the
distributional range of virtually all threatened vertebrates9 rapid deforesta-
tion has taken its toll on Madagascar biodiversity for almost fifty years
now32,33. Besides direct human activities, climate change poses another
obvious threat to the island’s biota. Albeit climate change is anticipated to
exert a negative effect on Madagascar’s forested biomes39, projected range
maps suggest amixedblessing,withmost range contractionbut also sizeable
range expansionbeing forecasted15,16,39. Consequently, humandisturbance is
usually perceived as posing a greater threat to the survival of Madagascar’s
species compared to the potential effects of climate change9. Whereas
vegetational cover hasbeen readilymodelled, though, the future distribution
of the tetrapod fauna is less well-understood and new species are still being
described12, possibly because of the restricted geographic range of several,
small-bodied endemic species23. Thus, the future of the small vertebrates is
surrounded by greater uncertainty than with plants, which imperils the
proper design of protected areas and corridors management to save them
from extinction13,14. Here, we applied species distribution modelling to 56
Madagascar’s chameleon species, including many of the rarest. The list of
uncommon species comprise leaf chameleons Brookesia (B. desperata, B.
karchei, B. micra, and B. tristis), several species in the genus Calumma (C.
guibei,C. furcifer,C. guillaumeti, C. marojezense) and Furcifer (F. timoni, F.
bifidus) whose range is mostly restricted to small areas in the North, like
Montagne d’Ambre and Marojejy National Parks and Nosy Hara archi-
pelago. Unfortunately, we found that for some 10–20 species the predicted
geographic range change will exceed 90% loss, depending on the LULC and
climate change future scenario (Supplementary Data 3), meaning they will
be in grave danger of extinction. This set of imperilled taxa mostly occupy
dry deciduous, subhumid and lowland forest habitats such as canopy cha-
meleon Furcifer willsii, Decary’s leaf chameleon B. decaryi and B. brunoi,
flat-casqued chameleon Calumma globifer, and the abovementioned B.
desperata, B.karchei, B. micra, and B. tristis, additional species within
Calumma (C. amber, C. guibei, C. ambreense, C. nasutum, C. fallax, C.
peltierorum and C. boettgeri) and Furcifer (F. petteri). In contrast, geo-
graphic range change predictions are positive (meaning they are expected to
gain range) forwidespread species, someofwhich occur inmultiple habitats
such as giant and rhinoceros chameleon Furcifer oustaleti and F. rhinocer-
atus, Parson’s, blue-legged, short-horned and O’Shaughnessy’s chameleons
(C. parsonii, C. crypticum, C. brevicorne, and C. oshaughnessyi) and the
stump-tailed chameleon B. superciliaris. Overall, though, there is no clear
relationship between commonness and the predicted percentage of habitat
loss, especially for the species occurring in the dry deciduous forest habitat,
such as Calumma ambreense, C. amber, and Brookesia tuberculata, all
predicted to be losing >90% of their habitat despite their commonness.

At comparing the effects of climate change and land use conversion,
and their intersection, on species habitat suitability in the future, we found
that the effects of LULC were preponderant. We predict that almost one
chameleon species per cell inMadagascar willfind unsuitable habitats in the
future (Table 1). This result does not change by considering different land
use future scenarios whereby the intensification of the climatic and socio-
economic factors will only affect themaximum of species loss ranging from
8 (mild) to 11 (severe) (Table 1, Supplementary Fig. 2). This ismostly due to
changes in LULC, which are predicted to override the effects of climate
change and the interaction terms of both sets of variables, regardless of
which climate change scenario, or SDM parameters are used (Fig. 2,
Table 2). The highest chameleon biodiversity loss is expected to occur in the
dry deciduous forest in the western and north-western sectors of the island
(Fig. 1, Supplementary Fig.1 and Supplementary Data 4). In contrast, most
potential species losses and gains (hence higher turnover) are concentrated
in the lowland forest in the eastern sector of the island (Fig.1). The true
nature of species gains, though, is hard to tell. Chameleons are not parti-
cularly goodatdispersal, andweconsequently boundeddispersal distance to
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around 1 km yr−1 40. While this figure is not particularly high by vertebrate
standards, it is liberal in assuming the habitat corridors can in fact be
trespassed.Thiswill critically dependon their existence and functioning and
ignores lack of connectivity between suitable habitats. This implies the
potential gains, in the absence of human-mediated translocation, are
hypothetical at best.

Predicting species distribution for extremely rare species cannot
usually be done26,41, and they are usually omitted18 or presence datapoints
simulated within the extent of occurrence so that up to 10 geographic cells
are included35. With SDM validation, statistical issues introduced by rarity
are still present, as with rare species common validation metrics such the
AUC suffers from variation in the species prevalence and sample size42. In
addition, pseudo-presences necessarily introduce some autocorrelation in
the data, and can only be supposed to may harbour the species presence.
However, it is important to notice that our procedure is notmeant to ‘learn’
the niche from the ‘pseudo-presences’. In ENphylo, the niche of a rare
species is imputedaftermodelling theniches of its relativeswithENFA.True
presences and ‘pseudo-presences’ are just used to convert the imputed niche
into habitat suitability, by computing the Mahalanobis distance between
sampled and the ‘mean’ habitat43,44. Since the ‘pseudo-presences’ are sam-
pled exactly according to their similarity to the real presence datapoints, this

distance could be safely assumed to be left almost unaltered by our proce-
dure. Of course, this does not mean that five datapoints provide a faithful
representation of the species niche, especially because we selected the
pseudo-presences as tominimize their dissimilarity from the true presences.
This may possibly imply the rare species niches are probably narrow. We
believemaintaining this non-random narrowness, though, provides amore
genuine representation of the actual niche than producing an artificially
broad niche for an otherwise little-known species. As a matter of fact,
ENphylo predictive performance was quite high (AUC > 0.9) which testifies
that the modelling procedure was robust. By applying ENphylo, and by
testing explicitly the combined effects of land-use and climate change under
different scenarios, we found that the most serious threat to Madagascar’s
future chameleonbiodiversity is posedby land conversion to agriculture and
other human activities, rather than by climate change.

Materials and methods
Chamaeleonidae occurrences
We downloaded the Chamaeleonidae modern occurrences from the
“Global Biodiversity Information Facility” online database (GBIF; www.
gbif.org/), including only the data provided with geographical coordinates.
Data were further filtered by selecting “Material citation and bothMachine

Fig. 1 | Species loss and gain of the Chamaeleo-
nidae species future projected distributions under
the severe SSP scenario. Top: Species loss and gain
calculated considering the dynamic climate
(“ssp585_lc_recent”), dynamic land use
(“lc_85_dinam”), and the dynamic land-climate
(“ssp585_lc85”). Predictions were obtained by
averaging the results derived from all thresholds and
GCM combinations (bottom).
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and Human observations” as the basis of record categories (GBIF.org (26
March 2024) GBIF Occurrence Download https://doi.org/10.15468/dl.
86bqsw). Record accuracywas assessed by including only occurrences given
to at least two decimal places (0.01 decimal degrees, corresponding to
1.11 km at the equator) and by removing duplicated or unrealistic records.
Then, we excluded the data outside the African continent and the Medi-
terranean area. Overall, we gathered 17170 occurrences belonging to 151
Chamaeleonidae species.

Environmental variables
To address the potential impact of climate and landuse change on the future
of Madagascar’s chameleons, we started by considering the 19 bioclimatic
variables listed in the CHELSAdatabase version 2.145 (http://chelsa-climate.
org/) as environmental predictors. Specifically, we downloaded the high-
resolution (1 × 1 km) modern climatic data (1981–2010) as the reference
temporal period,while for future scenarios,we referred toprojections for the
2071–2100 interval.We took into account both themild and severe “Shared
Socioeconomic Pathways” (SSP), i.e., SSP1-2.6 and SSP5-8.5 scenarios. For
each of them, we considered three global circulation models (GCMs) from
the Coupled Model Intercomparison Project (CMIP6), namely GFDL-
ESM4, MRI-ESM2-0, and IPSL-CM6A-LR. To take into account Mada-
gascar’s land use change scenarios, we considered seven Land Use/Land
Cover (LULC) categories (https://www.geosimulation.cn/), as provided in
ref. 46. Specifically, we calculatedEuclidean distances fromeach of the seven
LULC categories and used them as predictors. Climate and LULC variables
were rasterized at 1 km spatial resolution and cropped along Madagascar
extent. Subsequently, the variables were checked for multicollinearity by
using the “usdm” R package47. After excluding the variables with a high

Pearson’s correlation coefficient (using 0.7 as the threshold), we retained 11
predictors: Temperature Seasonality (BIO4),MaxTemperature ofWarmest
Month (BIO5), Temperature Annual Range (BIO7), Precipitation of Wet-
test Month (BIO13), Precipitation Seasonality (BIO15) and Euclidean dis-
tance from Water bodies, Forests, Grasslands, Barren areas, Urban areas,
and Croplands.

Species distribution models (SDMs)
The selected predictors were used to feed species distribution models
(SDMs) sought to predict the current and future potential distribution of
Chamaeleonidae species. We used three different modelling approaches
depending on the number of occurrences available per species. Specifically,
we adopted theENphylomodelling algorithm27 for the species with less than
15 occurrences, given the proven ability of this algorithm to outperform
ensembles of small models (ESMs20) and “traditional” SDMs when rare
species are modelled27. To run ENphylo, for each species we randomly
generated 10,000 background points across the ecoregion included within
the study area48. In ENphylo, the climatic niche dimensions of rare species
are derived estimating the marginality and specialization axes of well-
sampled species under Ecological-Niche Factor Analysis (ENFA)44 analysis
first, and then estimating marginality and specialization for the rare species
via phylogenetic imputation. Although this procedure provides the essential
niche information, at least five occurrences are necessary to convert the
phylogenetically-imputed niche marginality and specialization axes into
Mahalanobis distances from the available climates and then into habitat
suitability values27. Here, we expanded ENphylo to work with less than five
occurrences. To this aim, we started designing as pseudo-presences the cells
adjacent to true presence (‘reference’) cells, according to the knight move

Fig. 2 | Interaction effects of climate and land use
change on Chamaeleonidae gain and loss. Top:
Species loss and gain calculated considering the
severe SSP, MaxSens+Spec as threshold, and MRI-
ESM2-0 as CMIP6 scenario (bottom).

Table 1 | Species loss and gain of the Chamaeleonidae species

Average loss Average gain Max loss Max gain

Mild Severe Mild Severe Mild Severe Mild Severe

Dynamic climate 0.163 0.275 0.060 0.067 6.000 8.889 2.444 2.000

Dynamic land use 0.749 0.737 0.722 0.573 6.667 7.667 8.000 8.000

Dynamic land-climate 0.823 0.890 0.677 0.470 8.889 11.222 6.889 6.111

Species loss and gain calculated under both themild (SSP1-2.6) and severe (SSP5-8.5) future predictions. Loss and gain valueswere obtained by averaging the predictions derived from all thresholds and
GCM combinations. For each scenario, the average and maximum loss and gain values are reported.
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criterion49. Then, we reduced the number of pseudo-presences by selecting
among them those closest to the reference cells in terms of climate and
LULC values. We first quantified the angle (i.e. the correlation coefficient)
between the climatic/LULCvectors associated to reference cells and those of
the pseudo-presence cells by computing the angle between their respective
climatic/LULC vectors using the R package “RRphylo”50. Then, we selected
npseudo-presence cells, wheren is equal to 5minus thenumber of reference
cells, according to their climatic/LULC similarity to the reference cells. This
procedure is meant to select a minimum number of pseudo-presences as to
attain to 5 potential presence cells (including the references) that could be
used to convert the phylogenetically-imputed niche marginality and spe-
cialization into habitat suitability values27. To perform phylogenetic impu-
tation of the niche marginality and specialization axes, we assembled a
composite, informal supertree using the chameleon phylogeny in Tonini
et al. 51 and Giles et al. 34 using the function tree.merger52 in “RRphylo”. We
excluded species for which (i) geographical information was not available,
(ii) occupy a single geographic cell, or (iii) phylogenetic informationwas not

available or conflicting between the source trees. The resulting phylogeny
includes 134 species (56 of them currently living in Madagascar, Supple-
mentary Data 1). After removing duplicate occurrences per cell, the total
occurrence number amounts to 6915 (Fig. 3, Supplementary Data 2).

ENphylo models were assessed through a random bootstrap cross-
validation procedure with replacement method by splitting the data into
80–20% training/testing folds. The bootstrap was repeated 10 times. Model
predictive accuracy was assessed by calculating the area under the receiver
operating characteristic curve (AUC), True Skill Statistic (TSS53), and Boyce
index54 and removing the models with an AUC value < 0.7. To account for
phylogenetic uncertainty, the entire procedure was repeated by testing 50
alternative phylogenies, produced randomlymodifying the species topology
and branch lengths with the function swapOne in the R package
“RRphylo”50. Then, we selected themodel with the best AUC value over the
50 replicates. Since we were interested in species diversity changes in
Madagascar, we retrieved only the best-fit models associated with Cha-
maeleonidae specieswhich currently live inMadagascar andprojected them

Fig. 3 | Map of the occurrences of the chameleon data used to perform this study
and their phylogenetic relationships. (Top) The colours and tree refer to chame-
leons living inMadagascar. (Bottom) The image of Furcifer verrucosus is distributed
under CC BY-SA 2.0 https://commons.wikimedia.org/wiki/File:Warty_
Chameleon_(Furcifer_verrucosus)_(9628372559).jpg. The image of Brookesia
superciliaris is distributed under CC0. https://commons.wikimedia.org/wiki/File:

Brookesia_superciliaris_185939354.jpg. The image of Palleon nasus is distributed
under CC BY-SA 4.0 https://commons.wikimedia.org/wiki/File:Palleon_nasus.JPG.
The image of Calumma parsonii is distributed under CC BY-SA 4.0. https://upload.
wikimedia.org/wikipedia/commons/4/42/Calumma_Parsonii_Ste_Marie_
Madagascar.jpg.

Table 2 | Percentages of the interaction effects of the possible combinations of climate and land use change across the
study area

Syngergic Additive Only climate Antagonistic Only LULC

Mild scenario Loss 1.70% 2.70% 5.28% 15.13% 75.19%

Gain 3.62% 0.86% 6.57% 3.68% 85.27%

syngergic additive only climate antagonistic only LULC

Severe scenario Loss 1.59% 4.04% 8.16% 19.16% 67.06%

Gain 6.21% 0.92% 9.51% 4.62% 78.74%

The percentages are averaged overall threshold and GCM combinations under mild (SSP1-2.6) and severe (SSP5-8.5) future scenarios.
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on current Madagascar climate/LULC as well as on future scenarios. Spe-
cifically, we considered the following climate and LULC change scenarios:
(i) dynamic climate while LULC was held constant (hereafter “dynamic
climate”), (ii) dynamic LULC while climate was held constant (hereafter
“dynamic land use”), and (iii) dynamic LULC and dynamic climate
(hereafter dynamic “LULC-climate”), following the same approach
described in ref. 55. Both current and future model predictions were
binarized to obtain presence/absence maps by using three thresholding
schemes, as to account for the effect of adopting different binarization
approaches56. Specifically, we selected the ‘equalize sensitivity and specifi-
city’ (SensSpec), ‘maximize TSS’ (MaxSens+Spec), and ‘minimum training
presence’ (TenPerc) using the “PresenceAbsence” R package57.

To model species climatic niche, we adopted the ESM approach for
species reporting a number of occurrences between 15 and 30. ESMs were
trained by considering all possible combinations of the environmental
variables taken two at a time. Lastly, for species with >30 occurrences were
modelled by applying a traditional SDM approach (i.e. including all
environmental variables at the same time). For both ESMs and SDMs, we
adopted an ensemble forecasting approach by testing three widely used
modelling techniques: Maximum Entropy (MaxEnt58), Random Forest
(RF59), and Generalized Linear Models (GLM). Models were trained by
relying on the functionalities provided in the ‘biomod2’ R package60. Spe-
cifically, we set “quadratic” and interaction level = 1 for defining the GLM
parameters. For the other algorithms, we maintained the default parameter
settings adopted in biomod2.

To evaluate model predictive accuracy, we performed a random
bootstrap cross-validation with replacement scheme splitting the data into
80–20% training/testing samples and repeating this procedure 10 times.
Model accuracy was evaluated by measuring the AUC, TSS, and Boyce
index. Poorly calibratedmodels were avoided removing those with an AUC
value < 0.7. Model averaging was performed by weighting the individual
model projections by their AUC values and averaging the results61. Models
were projected on the currentMadagascar climate/LULC and on the future
scenarios described above. Model projections were subsequently binarized
by using the same thresholds described before.

Since the Chamaeleonidae species are characterized by limited dis-
persal abilities and live in highly-fragmented habitats62, we decided to
incorporate a dispersal constraint to the future projections of their dis-
tribution. We established a distance equal to 1 km as maximum annual
dispersal rate, maintaining constant this value over time for all species.
According to this strategy, we first calculated theminimumconvex polygon
enclosing all the localities where a species occurs, then created a buffer
around this polygonwith a radius equal to themaximumreachable distance
from nowadays to the future (i.e., 60 km over a time span from 2010 to
2070). Subsequently, the current and future binary maps were cropped
accordingly.

Binary maps obtained from the three model approaches were stacked
among the species for current and future scenarios separately. After that, we
calculated three indices: species richness (SR), species loss (L), and species
gain (G), as to obtain a single vector of three values at each grid cell following
the approach described in ref. 63. All indices were calculated by using the
“biomod2”.

To quantify the individual and synergic effects of the climatic and
LULCchanges inpredictingChamaeleonidaedistribution,we calculated the
delta in species richness (i.e., future− current) and summed the species
losses and gains per cell by applying a paired comparison between the
current and all the future scenarios. Moreover, the loss and gain values
obtained for the dynamic land use (a), dynamic climate (b) and dynamic
land-climate future scenarios (c) were adopted to define five types of
interactions among the scenarios, as follows: (i) “Synergistic”, when c >
a+ b, (ii) “Additive”, when c = a+ b, and (iii) “Antagonistic”, when c <
min(a, b) or c <max(a, b), or max(a, b) ≤ c < a+ b45, (iv) “only climate”
when a = 0 and b > 0, and “only LULC” when a > 0 and b = 0. All the
procedure was repeated for loss and gain separately after removing the cells
where no interaction occurred (i.e., all a, b, and c = 0).

Lastly, we quantified the types of interactions separately for mild and
severe SPP under different future scenarios calculating the percentage of
grid cells where an antagonistic, synergistic, and additive effect occurred.

The software developed to produce the rare species modelling,
including ENphylo, is embedded in the R package RRdtn64.

Statistics and reproducibility
Rscriptsassociatedwith this study are available as SupplementaryData5.zip
file. Files contains three annotated R scripts which describe the entire pro-
cedure used to model the Chamaeleonidae species by using the three dif-
ferent modelling approaches (ENphylo, ESM, and SDM). Codes are
annotated to allow reproducibility.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw data and the chameleon phylogenetic tree are available in the Sup-
plementary Data files.

Code availability
Rscriptsassociatedwith this study are available as SupplementaryData5.zip
file. TheRpackage RRdtn embedding the ENphylo functions is available via
Zenodo at https://doi.org/10.5281/zenodo.12734585.
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