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A B S T R A C T

In recent years, epigenetics has been revealed as a mechanism able to modulate the expression o virulence traits
in diverse pathogens, including Candida albicans. Indeed, epigenetic regulation can sense environmental changes,
leading to the rapid and reversible modulation o gene expression with consequent adaptation to novel envi-
ronments. How epigenetic changes can impact expression and signalling output, including events associated with
mechanisms o morphological transition and virulence, is still poorly studied. Here, using nicotinamide as a
sirtuin inhibitor, we explored how the accumulation o the H3K56 acetylation, the most prominent histone
acetylation in C. albicans, might aect its interaction with the host. Our experiments demonstrate that H3K56
acetylation prooundly aects the production and/or secretion o soluble actors compromising actin remodelling
and cytokine production. ChIP- and RNA-seq analyses highlighted a direct impact o H3K56 acetylation on genes
related to phenotypic switching, biolm ormation and cell aggregation. Direct and indirect regulation also in-
volves genes related to cell wall protein biosynthesis, β-glucan and mannan exposure, and hydrolytic secreted
enzymes, supporting the hypothesis that the fuctuations o H3K56 acetylation in C. albicans might impair the
macrophage response to the yeast and thus promote the host-immune escaping.

1. Introduction

Candida albicans is a well-adapted commensal ungus that colonises
mucosal regions like the mouth, gut, and vagina. However, in immu-
nocompromised hosts or ollowing prolonged antibacterial treatments,
it might act as an opportunistic pathogen, causing invasive diseases up
to lie-threatening systemic inections [1]. Among the various mecha-
nisms developed by the ungus to switch rom commensal to deadly
pathogen, there are: i) reversible morphological transition between
yeast and lamentous orms, ii) white-opaque phenotypic switch and iii)

biolm ormation [2]. Each o these strategies is potentially pathogenic
since they avour C. albicans adherence, tissue invasion, and the or-
mation o resilient biolm communities on medical devices and host
suraces.

Central to the interplay between C. albicans and the host immune
system are innate immune phagocytes, particularly macrophages (MΦs)
[3]. These cells play a crucial role in recognizing and eliminating ungal
pathogens through pattern recognition receptors (PRRs) that detect
pathogen-associated molecular patterns (PAMPs) present on the surace
o C. albicans, mainly cell wall carbohydrates as mannans (in
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glycosylated proteins), β-glucan, and chitin [4,5]. However, C. albicans
has developed sophisticated mechanisms to evade macrophage-
mediated killing, including the ability to switch rom yeast to hyphal
orms, which acilitates escape rom phagocytosis, through membrane
piercing via mechanical orces, or production o the hypha-associated
toxin candidalysin [6,7]. Besides candidalysin, Candida secretes spe-
cic lipases, aspartyl proteinases (SAP-amily proteins), and other hy-
drolytic enzymes responsible or immune host cell damage, avouring
ungal dissemination or immune evasion [8].

Farnesol (FOH), a well-known quorum sensing molecules (QSMs)
[9], has been implicated in modulating host immune responses by
infuencing immune cell activation, cytokine release, and neutrophil
extracellular trap (NET) ormation. Additionally, C. albicans actively
remodels its cell wall composition in response to environmental stimuli,
modulating the exposure o PAMPs to evade immune detection and
phagocytosis.

Moreover, FOH has been implicated in several physiological pro-
cesses, including lamentation, biolm ormation, drug efux, and
apoptosis [10,11]. Nevertheless, some evidence reports QSMs having an
immunomodulatory eect on dierent immune cell morphotypes. In
particular, FOH is likely to modulate host immune recognition in mul-
tiple ways, including the remodelling o β-glucan in response to alkaline
pH [12]. Moreover, monocytes and neutrophils exposed to FOH display
increased expression o activation markers and promote the release o
proinfammatory cytokines, whereas the exposure o MΦs to E,E-FOH
secreted by white cells stimulates their chemokinesis, improving

migration towards the inection site [13,14]. Finally, FOH stimulates
NETosis via Mac–1 and TLR2, activating a ROS-dependent NETosis
pathway [15], conrming that it can mediate Candida-host
communication.

Besides escaping rom phagosomes, C. albicans also actively regulates
the exposure o PAMPs (i.e., β-1,3-glucan, mannans) by remodelling its
cell wall in response to environmental stimuli, preventing the recogni-
tion and phagocytosis [16].

The tremendous ability o C. albicans to accommodate multiple
environmental changes requires plasticity o chromatin structure and
gene accessibility to transcriptional machinery, which is partially
accomplished by epigenetic mechanisms. One o the most abundant and
relevant post-translational modications in C. albicans is the acetylation
o H3K56 [17]. Such histone modication, which results rom the ac-
tivity o two enzymes, the acetyltranserases Rtt109 and the Hst3
deacetylase, contributes to ungal genome stability [17,18]. In a recent
genome-wide analysis o H3K56ac, we highlighted its implication in
regulating the transcription o genes involved in C. albicans morpho-
logical switching and, thereore, virulence [19].

In the present study, we investigated whether the acetylation o
H3K56 might aect the Candida-MΦ interaction. Thereore, by means o
the non-specic Hst3 inhibitor nicotinamide (NAM), we evaluated
whether the alteration o H3K56 acetylation would aect the secretion
o soluble actors by C. albicans. In particular, we tested the eect o
Candida growth-conditioned media, treated or not with NAM, on murine
MΦs at the morphological and unctional levels. In addition, we

Fig. 1. NAM treatment reduces hyphae ormation. (A) C. albicans (Ca) was grown with or without 10 mM NAM in hyphae-promoting conditions, and the H3K56ac
signal was detected by Western Blot in three independent experiments. Total H3 served as loading control. (B) Densitometric analysis o H3K56ac normalised to H3
rom the Western Blot in (A). Values are the mean ± standard deviation o three independent experiments ****p < 0.0001 (t-test). (C) Representative pictures o
C. albicans cells incubated overnight without (Ca) or with 10 mM NAM (Ca_NAM) in RPMI at 37 ◦C. Scale bar: 100 μm. (D) Viability o J774A.1 cells by MTT assay
ollowing the treatment with dierent concentrations o NAM or 24 h. Values are the mean ± s.d. o our replicates. **** p < 0.0001 (one-way ANOVA with
Dunnet’s test).
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analysed transcriptome modications and genome enrichment o
H3K56ac in C. albicans grown in the same experimental conditions to
elucidate the involvement o this histone modication on the ungus
virulence mechanisms.

2. Materials and methods

2.1. Chemicals

Nicotinamide (NAM) was purchased by Sigma-Aldrich (Milan, Italy).
For all the experiments, 1 M NAM, reshly prepared in ultra-pure
distilled water, was used as stock, lter-sterilized and added to culture
media to obtain the required concentrations.

2.2. Western blot analysis and morphological evaluation of NAM-treated
C. albicans

C. albicans wild-type strain SC5314 (ATCC-MYA-2876) was grown
or approximately 48 h at 25 ◦C in YPD medium (1 % Yeast extract, 2 %
Peptone, 2 % Dextrose). Subsequently, yeast cells were diluted to 0.1 OD
(considering that 1 OD = 0.25 × 108 cells/mL) in YPD resh medium,
and incubated at 25 ◦C or about 24 h. Then, yeasts were seeded onto
100mm diameter Petri dishes at a density o 1.5× 104 cells/mL in 10mL
RPMI 1640 medium with 2 mM L-Glutamine (Euroclone, Pero, Italy) and
incubated at 37 ◦C, 5 % CO2 or 16 h. For NAM treatment, the stock
solution was diluted at dierent concentrations (10, 25, 50 and 100mM)
in RPMI, and untreated Candida was used as control (Ca).

For Western blot analysis, Ca and Ca_NAM ater 16 h o incubation
were collected by centriugation (4.700 g, 10 min at 4 ◦C) and resus-
pended in 10mM EDTA, 10 mM Tris-HCl pH 7.4, 5 mM sodium butyrate,
5 mM NAM, 2.5 % 2-Mercaptoethanol and 10 % glycerol. Histone
extraction was perormed as described by Conte C. et al. [19]. For
Western blotting, 0.5 μg o each histone sample was resolved by SDS-
PAGE on 15 % polyacrylamide gel and transerred to a nitrocellulose
membrane using the Trans-Blot Turbo Transer System (Bio-Rad). The
primary antibodies used were anti-H3 (Abcam) and anti-H3K56ac
(Active Moti). The densitometric analysis was perormed using
ImageJ analysis sotware.

Brighteld optical microscopic images o C. albicans were taken at
dierent time points (2, 4, 5, 6, 7, 9 and 16 h) by inverted microscopy
(Zeiss Axiovert 5) coupled with a camera AxioCam 208 color (ZEISS,
Germany) using 20× magnication and hyphal length was measured
using Zeiss Zen 3.9 sotware. Cell density o untreated or NAM-treated
C. albicans ater 16 h o incubation was measured by ImageJ 1.49 sot-
ware ollowing this procedure: convert to 16-bit image➔process - nd
edges➔Image-adjust-threshold➔analyze Set measurements – tick
“Area”, “Area raction”, “Limit to threshold” “mean gray value”, “Inte-
grated density” and analyze and measure the area (%).

2.3. Macrophage viability

Murine macrophages J774A.1 cell line was supplied by LGC Euro-
pean partner o ATCC (LGC Standards) and cultured in RPMI 1640
(Euroclone, Pero, Italy) supplemented with 10 % etal bovine serum
(FBS, Euroclone, South America, origin EU approved), penicillin-
streptomycin solution (100 μg/mL penicillin and 100 μg/mL strepto-
mycin) (Euroclone, Italy).

The mitochondrial-dependent MTT [(3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl tetrazolium bromide] reduction to ormazan was used to
assess MΦs viability. Briefy, 105 cells/well were seeded onto a 96-well
plate (100 μL/each well) and incubated at 37 ◦C and 5 % CO2 or 24 h
with dierent concentrations o NAM: 10, 25, 50 and 100 mM. Ater 24
h, MTT was added at a nal concentration o 0.5 mg/mL and incubated
or 1 h at 37 ◦C. Then, the medium was discarded and 100 μL o DMSO
were added to each well to dissolve ormazan crystals. Cell viability was
measured spectrophotometrically, reading the absorbance at 500 nm
with reerence at 620 nm.

2.4. RNA sequencing

For RNA extraction, C. albicans was grown rst in YPD as described
above (Section 2.2), and then 5.5 × 105 cells /mL were inoculated in
RPMI with or without 10 mM NAM or roughly 16 h, subsequently
harvested (8.000 g or 10 min at 4 ◦C) and washed with UltraPure™ 
DNase/Rnase-Free Distilled Water (Thermo Fischer Scientic). The cell
pellet was resuspended in 1 ml QIAzol Lysis Reagent (Qiagen) and dis-
rupted mechanically with a BeadBug microtube homogeniser. Total
RNA was puried ollowing QIAzol manuacturer instructions. Three
independent biological replicates were perormed or either control or
treated C. albicans cells. RNA quality was assessed with TapeStation

Fig. 2. H3K56 acetylation proling in C. albicans ollowing NAM treatment. A)
Representative prole heatmap or H3K56ac ChIP-seq signal intensity around
TSS (± 2kb) o ReSeq genes o control (Ca) and NAM-treated C. albicans
(Ca_NAM). The gradient blue-to-red color indicates the high-to-low log2 ratio o
the number o reads between the IP and the respective Input counts in the
corresponding region. B) Number o signicant peaks (FDR ≤ 0.05) rom ChIP-
seq analysis annotated in each genomic region.
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Fig. 3. Gene ontology enrichment analysis. Results o gene ontology analysis o ChIP-enriched regions in control (Ca) and NAM treated (Ca_NAM) cells perormed or
each genomic region (promoters, exons, intergenic) by ShinyGO 0.8. The analysis was conducted including all available gene sets with a pathway size minimum = 5
and FDR cuto = 0.05.

M. Conte et al.
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(Agilent) and only RNA with RIN > 8 was used or RNA-seq library
production.

For RNA sequencing, indexed libraries were prepared rom 1 μg o
puried RNA using TruSeq Stranded Total RNA Sample Prep Kit (Illu-
mina Inc.), according to the manuacturer instructions. Libraries were
pooled and sequenced (paired-end, 2 × 100 bp) on the NextSeq 550
platorm (Illumina Inc.).

2.5. Chromatin immunoprecipitation of C. albicans

C. albicanswas grown as described in Section 2.4. Ater 16 h at 37 ◦C,
5 % CO2 Candida was cross-linked with 1 % ormaldehyde or 15 min at
RT with gentle shaking. The reaction was quenched by adding 125 mM
glycine and incubating or 5 min at RT under gentle shaking. Chromatin
immunoprecipitation was perormed as previously described [20],
except or cell lysis, which was carried out using a cryogenic reezer mill
(SPEX SamplePrep 6970EFM Freezer/Mill). ChIP-seq libraries were

generated rom two independent biological replicates o H3K56ac and
input ollowing a previously published protocol [21] and sequenced on
Illumina NextSeq 500 using 2 × 75 bp reads.

2.6. Bioinformatic analysis

For RNA sequencing, analysis was perormed using the Flaski RNA-
seq pipeline [22] and the reerence strain Candida albicans SC5314
genome assembly GCA_000182965.3.

Data normalisation and dierentially expressed transcripts were
identied using DESeq2 with standard parameters. Genes with FDR ≤
0.05 (False Discovery Rate) and with a value o Fold Change ≤ 1.5 (or
down-regulated genes) or Fold Change ≥1.5 (or up-regulated genes)
were considered signicantly dierentially expressed. Expression levels
are displayed in log2-transormed RPKM (Reads Per Kilobase o tran-
script per Million mapped reads).

For ChIP-sequencing, the analysis was perormed using the Galaxy

Fig. 4. Dysregulated genes ollowing NAM treatment. Heatmap showing the expression levels in log2 RPKM+1 o dierentially expressed genes among Ca (C) and
Ca_NAM (N) (FDR ≤0.05). The experiment was perormed in triplicate.

M. Conte et al.



BBA - Gene Regulatory Mechanisms 1867 (2024) 195048

6

tool [23].
Briefy, ater FastQC quality check, the paired-end reads were

aligned to the reerence Candida albicans SC5314 genome (assembly
GCA_000182965.3) using Bowtie 2 (Galaxy Version 2.4.4) and the
generated BAM le was ltered with Filter BAM (Galaxy Version
SAMTOOLS: 1.8). Mapped reads were indexed and merged using sam-
tools MergeSamFiles (Galaxy Version 2.18.2.1) and converted to bigwig
les using deepTools bamCoverage (Galaxy Version 3.5.1.0.0) with a
bin size o 10 and normalisation to genomic content.

Peak calling was perormed with MACS2 callpeak (Galaxy Version
2.2.7) using standard parameters or board regions. Peak annotation was
carried out using annotatePeaks (Galaxy Version 4.11 + galaxy3).

Gene ontology analysis was perormed by ShinyGO V0.80 [24] with
ollowing settings: Pathway database = all available gene sets; FDR
cuto = 0.05; min. pathway size = 5. All the proteinprotein interac-
tion (PPI) proles were obtained rom the STRING webserver (https://st
ring-db.org/).

2.7. Preparation of C. albicans conditioned media

Conditioned media were obtained by growing C. albicans as
described in 2.4 section. Ater 16 h, in RPMI and 5 % CO2 at 37 ◦C with
or without 10 mM NAM, culture media were collected, centriuged at
10.000g or 10 min and lter sterilized using a 0.45 μm syringe lter. At
the end o this procedure, we obtained the conditioned medium o
C. albicans control (Ca-CM) and the conditionedmedium oNAM-treated

C. albicans (Ca_NAM-CM). Since NAM has low stability in water solution,
to get the correct control media, RPMI with or without 10 mM NAM was
incubated at 37 ◦C and 5 % CO2 or 16 h and lter sterilized, obtaining
the control medium (CTRL-M) and NAM-treated medium (NAM-M). All
media were reshly prepared.

2.8. Phalloidin staining

To assay whether the morphology o J774A.1 cells was aected by
C. albicans conditioned media, MΦs were stained with TRITC-Phalloidin
ater incubation with dierent conditioned media. In detail, J774A.1
cells were seeded on poly-lysine coated cover glasses at a density o 1.5
× 105 cells/mL in 24-well plates, washed twice with PBS (Euroclone,
Pero, Italy), exposed to CTRL-M, NAM-M, Ca-CM and Ca_NAM-CM,
prepared as described in Section 2.6, and stained/imaged ater 8 h o
incubation.

Ater treatments, cells were xed with 4 % paraormaldehyde or 5
min, washed and permeabilised with PBS-Triton X-100 (0.1 % v/v) or
10 min. Coverslips were then incubated with blocking buer (1 % w/v
BSA in PBS) or 30 min at RT and stained with 2 μg/mL TRITC-
Phalloidin/ Hoechst 33342 or 1 h at room temperature (RT). Images
were acquired by using a LEICA TCS SP8 conocal microscope.

The percentage o actin-bundle positive cells over the total, was
calculated rom multiple elds (each eld= 30 cells), ensuring a total o
300 cells across various elds o view (and multiple coverslips) or each
condition.

2.9. RTqPCR analysis of J774A.1

Total RNA was extracted using TRIzol reagent (Invitrogen, no.
15596018, New Zealand) ollowing the manuacturer’s instructions, and
500 ng o each RNA was retrotranscribed by M-MLV Reverse Tran-
scriptase (GeneSpin S.r.l, Italy). The real-time PCR was perormed using
the QuantStudio™ 5 Real-Time PCR System (ThermoFisher). Dierent
dilutions o cDNAwere used or each gene in a 12 μL reaction using Luna
Universal qPCR Master Mix (New England BioLabs, USA). The primer
sequences are reported in supplementary material, Table S1. Results
rom three independent experiments in technical duplicates were
analyzed using the Delta-Delta CT method and HPRT1 was used as a
reerence gene.

2.10. Quantitative analysis of farnesol by mass spectrometry

30 μL o each secretome sample rom Candida albicans, treated or not
with NAM 10 mM, were submitted to UPLC-ESI-MRM-MS analysis to
quantiy arnesol. Opportune blank samples o RPMI were also run.
UPLC-ESI-MRM-MS analyses were perormed on a 6500 Q-TRAP rom
Sciex equipped with Shimadzu LC-20A and Auto Sampler systems
(Sciex). UPLC separation was perormed on a Luna Omega Polar PS 1.6
μm C18 100 Å column (50 × 2.10 mm, Phenomenex) at a fow rate o
400 μL/min. 0.1 % Formic Acid in H2O (A) and 0.1 % Formic Acid in
Acetonitrile (B) were used as mobile phases and the ollowing gradient
was perormed: 0 % B rom 0 to 4 min, 0 % to 95 % B over 10 min, then
held at 95 % B or 5 min and re-equilibrated to 0 % B over 5min. Q-TRAP
6500 was operated in positive MRM scanning mode, with declustering
potential (DP) set at 30 V, entrance potential (EP) at 12 V, collision
energy (CE) at 20 V and cell exit potential (CXP) at 12 V. Farnesol was
monitored through the 205.0/149.0, 205.0/121.0 and 205.0/109.0
transitions: the area o peak related to the transition 205.0/121.0 was
measured using the Analyst Sotware rom Sciex and used or arnesol
quantication in each sample. The other two transitions were used to
conrm the occurrence o arnesol. An external calibration curve has
been prepared using pure arnesol (Sigma-Aldrich, Merck Group) at
concentrations ranging rom 10 nM to 50 μM.

Fig. 5. NAM treatment leads to transcripts dysregulation o genes involved in
virulence. Heatmaps showing the expression levels in log2 RPKM+1 o selected
genes involved in glucans/mannans exposure, cell wall remodelling, and hy-
drolytic enzymes biosynthesis (FDR ≤0.05; distance measure: Euclidean; clus-
tering algorithm: Ward).

M. Conte et al.
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2.11. Statistical analysis

Quantitative results are rom at least three independent experiments
and are expressed as means± s.d. Data were statistically analyzed by the
two-tailed Student t-test or, alternatively, one-way ANOVA with Dun-
net’s or Tukey’s multiple comparison test by GraphPad Prism 7
(GraphPad Sotware). A p-value <0.05 was considered statistically
signicant.

3. Results

3.1. Inhibition of Hst3 impairs hyphae formation

The modulation omorphogenesis is one o the most important skills
used by C. albicans to respond to environmental changes and represents
one o its main virulence actors. For instance, hyphae development is a
strategy by which C. albicans escapes MΦs killing, inducing direct or
indirect damage (viamechanical piercing or producing the candidalysin
toxin) to the phagocyte membrane [7].

H3K56 acetylation is known to be involved in the yeast-to-hyphae
transition. Indeed, the histone deacetylase Hst3 inhibition signicantly
impairs the ormation o the hyphal crown around the macro-colonies
on solid media and induces a V-shaped morphology under yeast-
promoting conditions (YPD at 25 ◦C) [19]. Based on these results, we
wondered whether the Candida morphological changes, ollowing the
modication o H3K56 acetylation, might be involved in the alteration
and evasion o MΦs response.

To this aim, we rst tested dierent concentrations o NAM (10–100

mM) to determine the minimum amount able to induce an accumulation
o H3K56ac without compromising either Candida or MΦs viability. As
previously seen or Candida grown in YPD at 25 ◦C [19], also in hyphae-
promoting growth conditions (RPMI at 37 ◦C and 5 % CO2), the con-
centration o 10 mM NAM was sucient to avour a robust increment o
H3K56 acetylation, conrmed by Western blotting o histones isolated
rom Candida ater 16 h o treatment (Fig. 1A, B). The increased level o
H3K56ac in NAM-treated cells (Ca_NAM), is associated with a less
compact mycelium architecture, resulting in a lower cell density o
approximately 38 ± 8 %, compared to 90 ± 1 % in untreated cells (Ca),
thereby conrming the involvement o Hst3 in the yeast-to-hyphae
transition (Fig. 1C). Interestingly, during the initial 5 h o growth in
RPMI at 37 ◦C with 5 % CO2, comparing Ca vs Ca_NAM, no signicant
dierences were observed in germination or ormation and elongation o
pseudohyphae and hyphae. However, starting rom 6 h o incubation,
the hyphae o Ca_NAM were signicantly shorter than those o Ca cells
(Supp. Fig. 1), conrming the involvement o Hst3 in the yeast-to-
hyphae transition (Fig. 1C). Moreover, 10 mM NAM did not aect
MΦs viability and was chosen as the working concentration (Fig. 1D).

3.2. Genome-wide analysis of H3K56ac in C. albicans

In order to identiy H3K56ac-enriched genomic regions in Candida
(Ca) and NAM-treated Candida (Ca_NAM), we perormed a ChIP-seq
analysis with an anti-H3K56ac antibody.

As shown in the plot proles o Fig. 2A, a dierent distribution o
H3K56 in genomic regions across the TSS o genes was observed among
the control condition (Ca) and Ca_NAM. In particular, ollowing NAM

Fig. 6. STRING cluster analysis o genes upregulated in NAM-treated cells (FDR ≤ 0.05). A Gene Ontology (GO) analysis was perormed or the most relevant clusters
(red squares), revealing an enrichment o proteins involved in gene expression regulation (clustering algorithm: MCL).
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treatment, a signicant enrichment o K56 acetylated regions was
observed predominantly in the promoters (Fig. 2B). Also, a higher
number o peaks was ound in intergenic regions, whereas a lower
number was ound in exons o NAM-treated compared to control cells
(Fig. 2B).

To investigate more deeply the possible molecular mechanisms
regulated by K56 acetylation/deacetylation, we perormed a Gene
Ontology (GO) analysis o ChIP-enriched regions in promoters, exons
and intergenic both in control and NAM treated cells (Fig. 3).

The GO-analysis o ChIP-enriched regions mapping in promoters o
control cells unveiled an enrichment o terms related to the proteasome
and ubiquitin pathway, suggesting that in physiological conditions
H3K56ac regulates the protein quality control mechanisms. Interest-
ingly, the GO-analysis o the promoters ChIP-enriched regions in NAM
treated cells, revealed a signicant enrichment o terms related to sugar
metabolisms, lamentation, and glucan biosynthetic processes. These
results, not only highlight a central role o such histone modication in
the basal metabolism o the ungus, but also conrm its potential
involvement in phenotypic switching. Moreover, the enrichment o
genes involved in glucan biosynthesis suggests a regulation o cell
adhesion and an indirect impact on cell recognition by immune cells.
Focusing on the exons, in not treated C. albicans, we ound an enrich-
ment o GO-terms relative to cell signalling and cell communication,
ATP binding, purine nucleotide binding. By contrast, upon NAM treat-
ment the terms mainly enriched were associated with cell adhesion,
biological processes involved in intra- and inter- species interaction and
biolm ormation. Notably, we observed a signicant enrichment in the
molecular unctions named “cis-regulatory region sequence-specic

DNA binding” and “RNA polymerase II cis-regulatory region sequence-
specic DNA binding”.

Finally, we did not nd any GO-term signicantly enriched in
intergenic ChIP regions o control cells, whereas in NAM-treated cells we
ound an enrichment o terms related to biolm ormation and extra-
cellular organelles.

3.3. RNA sequencing unveils transcriptional dysregulation upon Hst3
inhibition

To urther elucidate the regulatory machinery dependent on
H3K56ac, we compared the transcriptional proles o Ca to Ca_NAM by
RNA sequencing and ound 958 up-regulated and 985 down-regulated
genes (FDR ≤ 0.05) in samples exposed to NAM vs. control condition
(Fig. 4).

Among them, a relevant dysregulation was observed in transcript
abundance o genes involved in β-glucan and mannan exposure, cell wall
proteins biosynthesis and hydrolytic secreted enzymes, including, or
instance, mannosyltranserases (i.e., MNN1, MNN41 and MNN43), pro-
teinases, phospholipases and lipases (i.e., SAP7, LIP3, PLB1) and other
enzymes that play a role in cell wall biosynthesis (i.e., PGA13, PGA26
and PGA45) (Fig. 5), supporting the hypothesis that the fuctuations o
H3K56 acetylation might compromise expression o genes that interere
with the host-immune recognition and acilitate the host-immune
escaping.

Among the downregulated genes, we identied EFG1 (enhanced
lamentous growth protein 1), a gene encoding or a transcription actor
that has been implicated in several dierent regulatory networks,

Fig. 7. STRING cluster analysis o genes downregulated in NAM-treated cells (FDR ≤ 0.05). Focus on the most relevant cluster 1, which includes 39 proteins
(clustering algorithm: MCL). Biological processes (GO-BP) and molecular unctions (GO-MF) enrichment analysis revealed an enrichment o terms related to acetyl-
CoA processing (FDR ≤ 0.05).
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including white/opaque switching, cell morphology, and biolm or-
mation [25]; HGC1 (hypha-specic G1 cyclin-related protein 1), an
essential gene or hyphal morphogenesis [26]; AHR1 (Adhesion and
hyphal regulator 1), a gene encoding a transcription actor which plays a
crucial role in the activation o ALS3 and ECE1, both involved in white-
opaque switching, ungal adhesion and lamentation [27]; EPT1, coding
or the enzyme responsible or the nal step o phosphatidylethanol-
amine (PE) and phosphatidylcholine (PC) biosynthesis and reported to
be overexpressed during hyphal elongation. Indeed, disruption o EPT1,
causing a loss o PE and PC synthesis, leads to a reduced virulence o
C. albicans [28] (Fig. 5).

To better analyze the processes regulated by H3K56ac, we perormed
a STRING and GO analysis. Among the up-regulated transcripts, we
ound two main large clusters, including 46 and 30 nodes o proteins
involved in DNA replication and repair and translational processes
(Fig. 6).

The analysis o the down-regulated transcripts revealed our clusters
mainly including mitochondrial proteins as well as proteins involved in
aminoacidic biosynthesis, ion transport, oxidation-reduction processes
(Clusters 2, 3, 4, Supp. Figs. 2–4), TCA cycle, and, more generally, in
biosynthesis, processing, and transport o acetyl-CoA (Cluster 1, Fig. 7).
The latter is particularly interesting since it suggests a potential balance
mechanism activated in response to NAM-induced hyperacetylation.
Among others, a signicant down-regulation was observed or the
Acetyl-CoA hydrolase ACH1, the acyl-CoA oxidase PXP2 responsible or
the rst step o acetyl-CoA biosynthesis rom imported atty acids [29],
the atty acid CoA ligases FAA2-1, FAA2-3, FAA2 and FAA21, the Acyl-
coenzyme A oxidase POX1-3, the major carnitine acetyltranserase
CAT2, responsible or intracellular acetyl-CoA transport [30,31], the
ACS1 (Acetyl-coenzyme A synthetase 1) [32] and the pyruvate dehy-
drogenase kinase PDK2 (Fig. 7). This result suggests that histone
hyperacetylation ollowing NAM treatment can induce a balance
mechanism o Acetyl-CoA biosynthesis as already seen or HDAC

inhibitors [33].
We already reported in Conte et al. 2022 that treatment o C. albicans

with NAM, under yeast-promoting conditions (YPD; 25 ◦C), alters the
expression o several virulence-related genes, primarily those related to
lamentation, cell wall organization, and adhesion, leading to the or-
mation o abnormal and enlarged lamentous structures called V-sha-
ped hyphae.

As expected, comparing the RNA-seq results rom Conte et al. 2022
with those derived rom C. albicans grown under hypha-promoting
conditions (RPMI; 37 ◦C; CO2), we identied several common genes:
481 upregulated and 294 downregulated (Supp. Fig. 5).

3.4. Intersecting analysis of RNA-seq and ChIP-seq data

Intersecting RNA-seq and ChIP-seq results, we ound 209 promoters,
70 exons and 101 intergenic regions whose H3K56 acetylation correlates
with transcript dysregulation (Supp. Fig. 6). Among them, we ocused
our STRING and GO analysis on genes that displayed an accumulation o
H3K56 acetylation upstream o the TSS upon NAM treatment and whose
transcription was upregulated and thus considered directly regulated by
this histone modication. We identied a cluster o 12 proteins (Fig. 8)
such as: Als1 (Agglutinin-like protein 1) a cell surace adhesion protein
which mediates both yeast-to-host tissue adherence and yeast aggrega-
tion [34]; Cz1 (Zinc cluster transcription actor 1) involved in the
regulation o cell wall structure and also required or lament inhibition
by arnesol [35,36]; Hgt2 (High-anity Glucose Transporter) which is
part o the core lamentation response network in C. albicans [37]; Wor1
(White-opaque regulator 1), a master regulator o white-opaque
switching [38]; Ywp1, a yeast-specic protein that has been detected
in the pseudohyphae [39], and has also been involved in processes such
as biolm dispersion and β-glucan masking control, consequently, its
overexpression might have a role in limiting macrophage unction.
Overall, these results suggest that this histone modication is directly

Fig. 8. STRING cluster analysis o genes transcriptionally upregulated and ChIP-enriched in NAM-treated cells (FDR ≤ 0.05). The most relevant cluster includes 12
proteins involved in phenotypic switching, cell adhesion and biolm ormation. Biological processes (GO-BP) enrichment analysis revealed an enrichment o terms
related to cell adhesion.
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involved in the transcription rates o genes involved in phenotypic
switching, cell adhesion and biolm ormation. This is consistent with
the morphological observations that displayed a decrease in hyphae
length and a loss o adhesiveness.

3.5. C. albicans conditioned media affect MΦs morphology

One o the immune escaping strategies adopted by C. albicans con-
sists o secreting soluble actors that induce actin rearrangement in
human epithelial and macrophage cells, impairing cytoskeletal unc-
tions [40,41]; thereore, we questioned whether H3K56 acetylation
could be involved in regulating the secretion o these actors.

To this end, we investigated the eects o both conditioned media
Ca-CM and Ca_NAM-CM on J774A.1 MΦs. As negative control media,
we used CTRL-M and NAM-M, respectively RPMI medium and RPMI
medium supplemented with 10 mM NAM, both incubated or 16 h at
37 ◦C, 5 % CO2.

J774A.1 MΦs were incubated or 8 h with each o these conditioned
media, and their cytoskeletal morphology was monitored by conocal
microscopy ollowing TRITC-phalloidin staining. Stimulation with Ca-
CM induced in 48 ± 15 % o cells a peculiar phenotype characterised
by cells with unusual actin bundles compared to the other experimental
conditions; in particular, actin-rich protrusions seem to be shorter and
less structured compared to CTRL-M, suggesting that Candida secretes

soluble actors that impair actin polymerisation in MΦs (Fig. 9).
On the other hand, MΦs incubated with Ca_NAM-CM showed a

morphological phenotype similar to those with CTRL-M and NAM-M,
suggesting that the accumulation o the H3K56 acetylation in Candida
reduces the production and/or secretion o metabolites responsible or
the appearance o actin bundles in MΦs (Fig. 9).

3.6. C. albicans conditioned media affect macrophage response

To better investigate the dierent MΦ responses, we analyzed a
panel o pro- and anti-infammatory cytokines by RTqPCR in J774A.1
cells exposed or 8 h to the above mentioned media (Fig. 10). As ex-
pected, MΦs sensed the Ca-CM by signicantly inducing cytokine
expression; on the contrary, the response o MΦs post-incubation with
Ca_NAM-CM was limited. The dierential cytokine stimulation by the
two conditioned media suggests that Hst3 inhibition prooundly alters
the production and release o PAMPs and their subsequent recognition
by PRRs, ollowed by cytokine production. Thereore, when Hst3 works
properly, and H3K56 acetylation is not altered, Candida seems to release
actors that i) alter actin polymerisation and remodelling processes o
MΦs and, at the same time, ii) stimulate cytokine production or the
recruitment o other immune cells and the promotion o the indirect
killing.

Fig. 9. NAM treatment reverts the ability o C. albicans conditioned medium to impair the cytoskeleton structure o J774A.1 cells. J774A.1 MΦs were exposed to
lter-sterilized supernatants collected rom C. albicans grown in RPMI medium (Ca-CM) or C. albicans grown in RPMI medium with 10 mM NAM (Ca_NAM-CM) and
analyzed by conocal microscopy ater 8 h o exposure ollowing TRITC-phalloidin staining. Hoechst or nuclei (blue). Scale bar: 20 μm. CTRL-M and NAM-M indicate
cells incubated with the two control media. White arrows indicate cells characterised by abnormal actin bundles. The experiment was perormed in triplicate.
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3.7. Farnesol production increases upon Hst3 inhibition

Several studies have suggested that QSMs can induce complex
cellular behaviour, including morphological switches and secretion o
extracellular enzymes. In particular, FOH, the rst characterised QSM in
ungi, has been shown to inhibit the yeast-to-mycelium transition o
C. albicans [10–42]. Thereore, we wondered whether H3K56 acetyla-
tion could aect FOH production.

To this end, we collected C. albicans conditioned media ater 16 h o
growth at 37 ◦C, 5 % CO2 in RPMI, alternatively with or without 10 mM
NAM in order to have a C. albicans conditioned medium (Ca-CM) and a
NAM-treated C. albicans conditioned medium (Ca_NAM-CM). Ater-
wards, we quantied the most representative QSM by mass spectrom-
etry in both conditioned media. As shown in Fig. 11, FOH was
signicantly higher in the medium collected rom C. albicans grown
upon Hst3 inhibition (Ca_NAM-CM) compared to the control superna-
tant (Ca-CM), suggesting that the production o this QSM is directly or
indirectly aected by H3K56 acetylation. Indeed, this result is in
agreement with the already documented ability o FOH to inhibit the
yeast-to-hypha transition [10–42] and with the result reported in

Fig. 1C, where Candida treated with NAM showed an impaired hyphae
ormation.

4. Discussion

Candida albicans is an important human pathogen whose virulence
actors coner extreme plasticity and the ability to survive in dierent
anatomical sites, each with its own specic set o environmental pres-
sures. Among the virulence actors, the reversible transition between
unicellular yeast cells and lamentous orms has been linked to the
H3K56 acetylation, regulated by the histone acetyltranserase Rtt109
and the histone deacetylase Hst3 [19–43]. Several known HDAC in-
hibitors have already been investigated as potential new antiungal
therapies, but the selectivity o these compounds remains a signicant
issue [43]. In Conte et al. 2022, we tested three o the currently available
sirtuin inhibitors (Inauhzin, Sirtinol, and SirReal2), but none o them
exhibited activity against Hst3p. Thereore, NAM was used as a non-
specic sirtuin inhibitor to explore the eects o H3K56ac accumula-
tion on Candida grown under yeast-promoting conditions (in YPD at
25 ◦C) [19]. In the present study, we explored the biological

Fig. 10. NAM-treated Candida conditioned medium partially stimulates cytokine response. The indicated cytokines were analyzed by RTqPCR in J774A.1 cells
exposed to lter-sterilized supernatants collected rom C. albicans grown in RPMI medium (Ca-CM) or C. albicans grown in RPMI medium with 10 mM NAM
(Ca_NAM-CM) or 8 h. MΦs incubated with just medium (CTRL-M) or NAM (NAM-M) were used as negative controls. HPRT1 was used as a housekeeping gene. Data
are expressed as the mean ± s.d. o three independent experiments (one-way ANOVA with Tukey’s test, *p-value ≤0.05, **p-value ≤0.01, ***p-value ≤0.001, ***p-
value ≤0.0001), and the mean o controls was set to 1.
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consequence o NAM treatment on Candida in hyphae-promoting con-
ditions (RPMI at 37 ◦C and 5 % CO2). In each growth condition, inhi-
bition o Hst3 causes morphological changes; in particular, in the rst
case, it induces an abnormal phenotype called V-shaped hyphae, while
in the second case, it slows down hyphal elongation.

As already extensively reported, the ability to rapidly switch be-
tween yeast and lamentous orms is one o the many strategies enrolled
by Candida to escape host recognition and invade the host organism,
including changes in adhesion properties, antigen expression, and tissue
anities [44]. During all these virulence processes, several proteins are
secreted through the classical and/or non-canonical secretory pathway,
including secreted aspartyl proteases and phospholipases, whose inter-
action and consequent eect on host cells help to prevent or limit the
extent o clearance by the host immune system. Starting rom this, we
wondered i Hst3 could aect, in addition to hyphal growth, also the
production o virulence-associated soluble actors able to modulate
Candida-host interaction.

Our ndings highlight that the correct unctioning o Hst3 leads to
the production and/or secretion o soluble actors that impair the actin
polymerisation in MΦs, causing a peculiar phenotype characterised by
unusual actin bundles and shorter actin-rich protrusions, which could
likely limit the phagocytic activity oMΦs. Indeed, in order to eliminate
the invading organism, phagocytosis requires actin cytoskeletal
remodelling, leading to distinct F-actin-rich membrane structures. The
macrophage lopodia sense the microenvironment, direct cell migration
and once ound the pathogen, surround it, assuming the typical
morphology o a cup [45]. The actin cytoskeleton changes o MΦs
incubated with the conditioned medium rom Candida control clearly
revealed a resistance mechanism o C. albicans to macrophage killing
and conrm how the host-pathogen interaction can determine the
evolution to dierent diseases.

On the contrary, the accumulation o the H3K56 acetylation in
Candida alters the composition o the conditioned medium, without
impairing the actin polymerisation o MΦs and stimulating less e-
ciently cytokine expression, particularly o IL-6, IL-12b, IL-4 and TNFα,
in MΦs.

By mass spectrometry analysis, we ound that FOH, the most known
Quorum-Sensing molecule, was signicantly more abundant in medium
rom NAM-treated C. albicans, suggesting that hyperacetylation o
H3K56 might be involved in the production and release o this QSM.
QSMs are considered key players in modulating immune cell response;
in particular, FOH seems to control macrophage migration both in vitro
and in vivo, as well as C. albicans lamentation [15]. The higher content

o FOH in NAM-treated conditioned medium might account or the
deective hyphal elongation and, at the same time, or the limited
cytokine production o MΦs post-exposure to the medium. Indeed, ac-
cording to Navarathna et al., exogenous FOH intereres with cytokine
expression during candidiasis in a mouse model [46].

To deeply understand how the alteration o the acetylation level o
H3K56 can aect C. albicans virulence mechanisms, we perormed a
ChIP-seq and an RNA-seq analysis.

Focusing on genes directly regulated by H3K56 acetylation, we
selected transcriptionally up-regulated genes that showed ChIP-
enriched regions upon NAM treatment. STRING and Gene Ontology
analyses revealed that many o the ChIP-enriched genomic regions are
related to phenotypic switching regulation, cell adhesion and biolm
ormation.

Moreover, among the genes directly regulated by this epigenetic
modication, there are dierent genes associated with the cell surace
and or this reason possibly involved in the release o soluble actors,
such as some GPI-anchored cell wall proteins (PGA39, PGA45, PGA53,
PGA54) and some other directly involved in cell wall protein man-
nosylation (MNN41), sphingolipid homeostasis (RTG3) and lipid meta-
bolism (RPN4).

Supporting this hypothesis, many other genes indirectly controlled
by H3K56 acetylation that came out rom the RNA-seq analysis are
hydrolytic secreted enzymes like proteinases, phospholipases and li-
pases (i.e., SAP7, LIP3, PLB1).

Among the indirectly regulated genes, o note, is the presence o
some genes involved in the biosynthesis, processing, and transport o
acetyl-CoA, suggesting that a balance mechanism might be activated in
response to the hyperacetylation induced by NAM treatment, in line
with the phenotype triggered by HDAC inhibitors, which lead to acetyl-
CoA depletion and consequent lethal metabolic stress [33].

Although NAM is a non-specic inhibitor o sirtuins, and may
potentially aect other cellular processes, the signicant increase in
H3K56ac levels ater NAM treatment, together with our RNA-seq and
ChIP-seq data, highlights the critical role o H3K56 acetylation in
Candida virulence. Our data conrm that Hst3 is a promising target or
the development o novel antiungal therapies.

5. Conclusions

When Hst3 works properly, it prooundly aects the production and/
or release o PAMPs, which, ollowing their recognition by PRR on MΦs,
compromise actin remodelling; at the same time, the PAMPs-containing
conditioned medium is sensed by MΦs which in turn produce and
release pro-infammatory cytokines attracting other immune cells aimed
to kill the invading ungus.

Altogether, our data emphasize the pleiotropic eect o the epige-
netic fuctuation o H3K56 acetylation and are consistent with the Hst3
role in connecting several pathways involved in dierent processes,
survival and virulence mechanisms enrolled by C. albicans.
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