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Abstract

We consider the adjacency spectrum of cycle-spliced signed graphs
(CSSG), i.e., signed graphs whose blocks are (independent) signed cy-
cles. For a signed graph Σ, the nullity η(Σ) is the multiplicity of
the 0-eigenvalue. The adjancency spectrum of cycle-spliced (signed)
graphs is studied in the literature for the relation between the nul-
lity η and the cyclomatic number c, in particular, it is known that
0 ≤ η(Σ) ≤ c(Σ) + 1. In this paper, nonsingular cycle-spliced bipar-
tite signed graphs are characterized. For cycle-spliced signed graphs
Σ having only odd cycles, we show that η(Σ) is 0 or 1. Finally, we
compute the nullity of CSSGs consisting of at most three cycles.

Keywords: Nullity, Cycle-spliced bipartite signed graphs, cyclomatic
number

MSC (2020): 05C05, 05C50.

10.22199/issn.0717-6279-6376



850 Suliman Khan and Adriana Ciampella

1. Introduction

In graph theory, a signed graph is a graph in which each edge is labeled
as positive or negative. More formally, a signed graph Σ = (Γ, σ) consists
of a simple graph Γ = (V,E), the underlying graph, with set of vertices
V = {u1, u2, . . . , un} and set of edges E = E(Γ), and a map σ : E(Γ) →
{+1,−1}, the signature, assigning a value from {+1,−1} to each edge of
Γ. The study of signed graphs has attracted considerable attention, as
it offers insights into a wide range of phenomena and has a large usage in
classical mathematical modeling, variety of socio-psychological and physical
processes. Signed graphs are very important for their connections with
classical mathematical systems (see [1, 2, 21, 29]).

Signed graphs inherit most notation from unsigned graphs but possess
several interesting properties that differentiate them from unsigned graphs.
These differences are highlighted, for example, in the study of extremal
problems with respect to a fixed spectral parameter, such as the index or
the spectral radius, within a given class of signed graphs ([3, 5, 6, 8]). The
adjacency matrix is a fundamental tool for analyzing the properties and
behavior of (signed) graphs. The adjacency matrix of Σ is a n× n matrix,
usually denoted by A(Σ) = (aij)n×n, and defined by

aij =

(
σ(eij) if ui is adjacent to uj ,
0 otherwise.

The nullity of Σ is the multiplicity of eigenvalue zero of A(Σ) and is
denoted by η(Σ). The rank of a signed graph r(Σ), is the rank of A(Σ). Let
n(Σ) be the order of a signed graph Σ, obviously, it is η(Σ) = n(Σ)− r(Σ).
The cyclomatic number of a signed graph Σ is denoted by c(Σ) and is defined
as c(Σ) = e(Σ)−n(Σ)+Θ(Σ), where e(Σ) and Θ(Σ) represent the number
of edges and the number of connected components in Σ, respectively. For
a connected signed graph Σ, that is, Θ(Σ) = 1, if c(Σ) = 0, or c(Σ) = 1, or
c(Σ) = 2, then Σ is, respectively, a tree, a unicyclic, a bicyclic signed graph.
In a signed (or unsigned) graph a block is a maximal connected subgraph
with no articulation point or cut vertex. A connected signed graph Σ is
a cycle-spliced signed graph if every block in Σ is a cycle. In particular,
for cycle-spliced signed graph, the cycles are independent, and therefore
the cyclomatic number equals the number of cycles. A cycle-spliced signed
graph without odd cycles is a cycle-spliced bipartite signed graph. A cycle
C in a signed graph Σ with c(Σ) ≥ 2 is a pendant cycle if only one of its
vertices has degree greater than 2. If c(Σ) = 1, then C = Σ is considered a
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pendant cycle.
The sign of a cycle C in Σ is the product of the signatures of its edges. A
cycle C in a signed graph Σ is positive if and only if C contains an even
number of negative edges. We call a signed graph Σ to be balanced if no
negative cycles in Σ exist and unbalanced, otherwise. A switching consists of
switching the signs of the edges in a cut. Two signed graphs are equivalent,
if one can be obtained from the other by a sequence of (sign) switchings.
The following result is well-known, and it says that balanced signed graphs
are equivalent to their underlying graphs; thus the eigenvalues are the same.

Lemma 1.1. Let Σ = (Γ, σ) be a signed graph. Then Σ is balanced if and
only if (Γ, σ) ∼ (Γ,+).

More generally, for a signed graph Σ = (Γ, σ), the signature is de-
termined by the signs of the independent cycles. Hence, for cycle-spliced
signed graphs the signature is determined by the signs of its cycles. For
all notation and results not give here, we refer the reader to [4] or to the
extensive bibliography [29].

A graph is singular (resp. nonsingular) if its adjacency matrix is singular
(resp. nonsingular). In [13], Collatz and Sinogowitz posed a problem to
characterize all singular graphs (η(Γ) > 0). In [24], Ma et al., proved that
η(Γ) ≤ 2c(Γ) + p(Γ) − 1 unless Γ is a cycle of length multiple of 4, where
p(Γ) is the total number of leaves in Γ. Chang et al., [11] and Wang [25]
characterized the graphs Γ with η(Γ) = 2c(Γ)+p(Γ)−1. In [23], Lu and Wu
characterized the signed graphs and proved that there are no signed graphs
with η(Γ, σ) = n(Γ) − 2m(Γ) + 2c(Γ) − 1, where m(Γ) is the matching
number of Γ. The nullity of unicyclic and bicyclic signed graphs were
studied by Fan et al. [19, 17] respectively. In [26], Wong et al. studied
the nullity and singularity of cycle-spliced bipartite graphs and gave the
bounds for the nullity of cycle-spliced bipartite graphs Γ in term of c(Γ),
i.e., 0 ≤ η(Γ) ≤ c(Γ)+1. Furthermore, they characterized the cycle-spliced
bipartite graphs with η(Γ) = c(Γ) + 1 and η(Γ) = 0, respectively. These
results are presented in Theorem 1.2.

A cycle in a cycle-spliced signed graph Σ is of i−type, 0 ≤ i ≤ 3, if its
length is equal to i (mod 4).

Theorem 1.2. ([26], Theorem 1.1). Let Γ be a cycles-spliced bipartite
graph with c(Γ) cycles. Then
(i) 0 ≤ η(Γ) ≤ c(Γ) + 1.
(ii) η(Γ) = c(Γ) + 1 if and only if all cycles in Σ are of 0−type.
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(iii) Γ is nonsingular if and only if Γ has a perfect matching, and Γ has a
maximum matching M such that M ∩E(C) is not a perfect matching of C
for every 0-type cycle C in Γ.

In [9], the authors prove that there is no cycle-spliced bipartite graph
Σ such that η(Σ) = c(Σ), and characterize cycle-spliced bipartite graphs Σ
with η(Σ) = c(Σ)− 1.

Theorem 1.3 ([9], Theorem 1.4). For any cycle-spliced bipartite graph
G with c(G) cycles, η(G) = c(G) − 1 if and only if G is a graph obtained
from a cycle-spliced bipartite graph H with η(H) = c(H) − 1 in which
every pendant cycle (if any) has length congruent to 2 (mod 4) by attaching
c(G)− c(H) cycles having length divisible by 4 on arbitrary vertex of H.

In [10] the same authors consider the signed case: they show that for
every signed cycle-spliced graph Γ, η(Γ) ≤ c(Γ)+1 and the extremal graphs
Γ with nullity c(Γ) + 1 are characterized, which extend the corresponding
results [26] on unsigned cycle-spliced graphs.

Theorem 1.4 ([10], Theorem 1.1). Let Γ be a signed cycle-spliced graph
with c(Γ) cycles. Then η(Γ) ≤ c(Γ) + 1 and the equality holds if and only
if all cycles in Γ have nullity 2.

Moreover, in [10] Theorem 1.3, they prove that for every (not necessarily
bipartite) signed cycle-spliced graph Γ, η(Γ) 6= c(Γ). Some properties on
signed cycle-spliced graphs Γ with η(Γ) = c(Γ)−1 are explored as well, and
they provide a structural characterization of signed cycle-spliced bipartite
graphs Γ satisfying η(Γ) = c(Γ)− 1.

Theorem 1.5 ([10], Theorem 1.4). Let Γ be a signed cycle-spliced bi-
partite graph with c(Γ) ≥ 2 and all pendant cycles have nullity 0. Then
η(Γ) = c(Γ)− 1 if and only if the distance between any two cut vertices of
Γ is even.

Theorem 1.6 ([10], Theorem 1.5). For any signed cycle-spliced bipar-
tite graph Γ with c(Γ) cycles, η(Γ) = c(Γ) − 1 if and only if Γ is a signed
graph obtained from a signed cycle-spliced bipartite graph (H,σ) with
η(H,σ) = c(H,σ) − 1 in which every pendant cycle (if any) has nullity
0 by attaching c(Γ) − c(H,σ) cycles with nullity 2 on arbitrary vertex of
(H,σ).
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In this article we characterize nonsingular cycle-spliced bipartite signed
graphs.

A matching of Σ is a collection of non-adjacent edges of Σ. A maximum
matching is a matching with the maximum possible number of edges. The
size of a maximum matching of Σ is denoted by m(Σ) and is called the
matching number of Σ. A matching covering all vertices of Σ is called a
perfect matching.

Theorem 1.7. Let Σ = (Γ, σ) be a cycle-spliced bipartite graph with c(Γ)
cycles. Then Σ is nonsingular if and only if it has a perfect matching, and
a maximum matching M such that M ∩E(C) is not a perfect matching of
C for every balanced 0-type or unbalanced 2-type cycle C in Σ.

Examples of nonsingular cycle-spliced signed graphs are also among
those cycle-spliced graphs with only odd cycles. We get the following result
about this kind of cycle-spliced signed graphs.

Theorem 1.8. Let Σ be a cycle-spliced signed graph in which all cycles
are odd.

• (i) If c(Σ) is odd, then Σ is nonsingular.

• (ii) If c(Σ) is even, then η(Σ) is 0 or 1.

• (iii) If every cycle of Σ has at most two cut-vertices of Σ, then Σ is
singular if and only if p+ + q− = p− + q+, where p+ and p− are the
number of positive and the number of negative 1-type cycles respec-
tively, while q+ and q− are the number of positive and the number of
negative 3-type cycles respectively.

The cases when Σ has both even cycles and odd cycles still eludes us.
We just analyze the case of a general wedge of balanced or unbalanced
cycles, of i−type for i = 0, 1, 2, 3.

The rest of the article is organized as follows. In Section 1 we provide
some notations and useful results about signed cycles.

Section 2 is devoted to characterizing nonsingular cycle-spliced bipartite
signed graphs. We also consider the nullity of cycle-spliced graphs having
only odd cycles. In Section 3 we discuss the particular case of a wedge of
both even and odd, balanced and unbalanced cycles and pose some open
questions. Further, we give a complete description of all cycle-spliced signed
graphs Σ such that c(Σ) ≤ 3.
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2. Preliminaries on signed cycles

Let Σ be a signed cycle. For v ∈ V (Σ), let NΣ(v) be the set of neighbors
of v and let dΣ(v) = |NΣ(v)| be the degree of v.

If we consider an induced subgraph M of Σ, then the neighbors of v in
M is denoted by NM(v). If D ⊆ V (Σ), then the deletion of D together
with all incidence edges is the induced subgraph of Σ denoted by Σ−D. If
D = {v1} or {v1, v2}, then Σ−D is denoted by Σ− v1 or Σ− v1 − v2. If v
is a vertex in M , then we denote by Σ−M + v the subgraph of Σ induced
by V (Σ−M) ∪ {v}.

A pendant vertex of a signed graph is a vertex of degree 1 of the un-
derlying graph. If u is a pendant vertex of a graph Σ and v is its unique
neighbor in Σ, then the operation that gives Σ− {u, v} from Σ is called a
pendant K2 deletion.

Lemma 2.1 ([19]). Let Σ be a signed graph. If u is a pendant vertex of
Σ and v is its unique neighbor, then η(Σ) = η(Σ− {u, v}).

Lemma 2.2 ([27, 16]). Let (Pn, σ) be a (signed) path. Then η(Pn, σ) = 1
if n is odd, and η(Pn, σ) = 0 if n is even.

Lemma 2.3 ([26]). Let Γ be a graph and C be a pendant cycle of Γ with
a cut vertex y. Let M = Γ − C + y. If C is a cycle of 0−type, then
η(Γ) = η(M) + 1, and if C is a cycle of 2−type, then η(Γ) ≤ η(M) + 1.

In [15], D. Cvetkovic̀ et.al., obtained the following result for a balanced
signed cycle.

Lemma 2.4. Let Cn be a balanced signed cycle. Then η(Cn) = 2 if Cn is
a cycle of 0−type, and 0 otherwise.

Y. Fan proved the following result when Cn is unbalanced.

Lemma 2.5 ([20]). Let Cn be a unbalanced signed cycle. Then it has

eigenvalues 2cos (2k−1)πn , k = 1, 2, . . . , n.

More precisely, we can write η(Cn) = 2 if Cn is of 2−type (i.e., n ≡
2(mod 4)), and 0 otherwise. In particular, we can say that for all unbal-
anced cycles of 0−type it is η(Cn) = 0.

These results can be summarized in the following Lemma (see also [16,
27]).
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Lemma 2.6. Let (Cn, σ) be a signed cycle. Then η(Cn, σ) = 2 if and
only if (Cn, σ) is balanced of 0-type or (Cn, σ) is unbalanced of 2-type.
η(Cn, σ) = 0 otherwise.

Recall that M is a pendant subgraph of a signed graph Σ with root y
if the removal of the vertex y disconnects Σ; thus y is a cut vertex of Σ.

Lemma 2.7. ([28]) Let Σ1 be a pendant subgraph of Σ with root y.
(i) If η(Σ1 − y) = η(Σ1) + 1, then η(Σ) = η(Σ1) + η(Σ−Σ1).
(ii) If η(Σ1 − y) = η(Σ1)− 1, then η(Σ) = η(Σ1) + η(Σ− Σ1 + y)− 1.

Corollary 2.8. Let C be a pendant cycle of a signed graph Σ with root y.
(i) If C is a balanced (resp. unbalanced) cycle of 0−type (resp. 2−type),
then η(Σ) = η(Σ− C + y) + 1.
(ii) If C is a balanced (resp. unbalanced) cycle of 2−type (resp. 0−type),
then η(Σ) = η(Σ− C).

For any natural number t ≥ 2, let Σ1, . . . ,Σt be signed rooted graphs
with root vi, respectively. We denote by

Wt
i=1Σi or

W
vΣi the wedge of the

Σi’s, that is, the graph obtained by identifying their roots at a unique vertex
v. If the rooted graphs are signed cycles, then the wedge of signed cycles
is equivalent to a cycle-spliced signed graph with exactly one cut-vertex v.

The following proposition is about the nullity of a wedge of signed cycles
of even length.

Proposition 2.9. Let Σ be a signed graph obtained from the wedge of n
cycles Ci of even length, i = 1, . . . , n. Hence,
(i) η(Σ) = c(Σ) + 1 = n + 1 if and only if all cycles Ci are balanced of
0−type or unbalanced of 2−type.
(ii) η(Σ) = c(Σ) − 1 = n − 1 if and only if at least one of the cycles Ci is
balanced of 2-type or unbalanced of 0-type.

Proof. (i) This comes from Theorem 1.4.
(ii) Assume that, say, C1 is either balanced of 2-type, or unbalanced of
0-type, and let v be the unique cut vertex of Σ. By Corollary 2.8 part(ii),
η(Σ) = η(Σ − C1) = ∪ni=2(Ci − v) = n − 1. If η(Σ) = c(Σ) − 1 = n − 1,
then at least one cycle of the Ci’s is balanced and 2−type or unbalanced
and 0−type by Theorem 1.4. 2

Example 2.10. In Fig. 2.1 a signed cycle-spliced graph is depicted. Ac-
cording to the above given notation, the unbalanced C3 and the balanced
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C5 are signed cycles of 0-type; the balanced C1 is a cycle of 1-type; the
balanced C4 is cycle of 2-type; the unbalanced C2 is a cycle of 3-type. The
pendant cycles are C1, C2, and C5.

Figure 2.1: A signed cycle-spliced graph.

3. Extremal graphs Σ with η(Σ) = 0

The purpose of this section is to identify cycle-spliced signed graphs Σ that
are nonsingular, that is η(Σ) = 0, the minimum possible value for nullity.
In the bipartite case, we have a characterization result. Other nonsingular
graphs can be found among those having only odd cycles.

3.1. Characterizing nonsingular cycle-spliced bipartite graphs

Let Σ = (Γ, σ) be a signed graph. The characteristic polynomial of Σ is

ΦΣ(x) = |xI −A(Σ)| = xn + an−1(Σ)x
n−1 + · · ·+ a1(Σ)x+ a0(Σ)

In analogy to Sachś formula ([14], p. 32), one can easily derive (using
the Coates formula [12]) the following characterization of the coefficients:

an−i(Σ) =
X
H∈Hi

σ(Hc)((−1)p(H)2q(H)), i = 1, . . . , n

where H is a signed subgraph of Σ, spanned over i vertices, whose com-
ponents are edges or cycles (of length at least 3), p(H) is the number of

Marisol Martínez
fu1
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components of H, q(H) is the number of cycles in H, Hc is a signed sub-
graph of H containing only its cycles, σ(Hc) is the product of the signs of
all cycles in Hc and Hi is the set of all subgraphs of H of order i.

If n is even, then a0 in |xI −A(Σ)| is equal to |A(Σ)|; if n is odd, then
a0 in |xI −A(Σ)| is equal to −|A(Σ)|.

The following result gives a sufficient condition for a signed graph Σ,
not necessarily cycle-spliced, to be nonsingular.

Lemma 3.1. Every signed graph Σ with an odd number of perfect match-
ings is nonsingular.

Proof. Since Σ has a perfect matching, then n = 2m(Σ). We need to
prove that the constant term a0(Σ) of the characteristic polynomial ΦΣ(x)
is non zero. Recall that

a0(Σ) =
X

H∈Hn

σ(Hc)((−1)p(H)2q(H)),

where H is a signed subgraph of Σ, spanned over all the n vertices of Σ.
Since Σ has an odd number, say 2h+1, of basic subgraphs of order n with n

2

copies of K2, there are 2h+1 copies of (−1)m(Σ) in the expression of a0(Σ).
All the other nonzero terms in the above expression are even, since they
are of the form σ(Hc)((−1)p(H)2q(H)) where q(H) ≥ 1. Hence a0(Σ) 6= 0
because it is an odd number. 2

For Σ a signed cycle-spliced bipartite graph, let Y be the set of all 0-type
balanced and all 2-type unbalanced cycles of Σ. We say that a maximum
matching M of Σ intersects Y if M ∩E(C) is not a perfect matching of C
for each C ∈ Y .

Lemma 3.2. Let Σ be an order n cycle-spliced bipartite graph with a
perfect matching, and Y the set of all 0-type balanced and all 2-type un-
balanced cycles of Σ. Then

X
H

(−1)s(H)2t(H)σ(H) = 0,

where H goes over all basic subgraphs of order n whose perfect matchings
fail to intersect Y .
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Proof. Let ∆ be a basic subgraph of order n whose perfect matchings
fail to intersect Y . The matching numbers m(∆) and m(Σ) coincide and
a perfect matching of ∆ is also a perfect matching of Σ. Let M be a
perfect matching of ∆. As M fails to intersect Y , there is C ∈ Y such
that M ∩E(C) is a perfect matching of C. Thus we get three related basic
subgraphs of order n: One is ∆, which contains C as a component, and
the other two, ∆0 and ∆00 are obtained by replacing C with two distinct
perfect matchings of C keeping all other components unchanged. ∆0 and
∆00 have s(∆)− 1 + |V (C)|

2 components and have one cycle less than those
of ∆. The contributions to the sum of the three basic subgraphs are the
following three terms:

(−1)s(∆)σ(∆)2t(∆), (−1)s(∆)−1+
|V (C)|

2 σ(∆)σ(C)2t(∆)−1,

(−1)s(∆)−1+
|V (C)|

2 σ(∆)σ(C)2t(∆)−1.

Next, we distinguish two cases:

(i) C is balanced of 0-type. σ(C) = 1 and |V (C)|
2 is even, so the sum of

the above three terms is zero.

(ii) C is unbalanced of 2-type. σ(C) = −1 and |V (C)|
2 is odd, so the sum

of the above three terms is zero.

Thus the sum
P

H(−1)s(H)σ(H)2t(H) = 0 is zero when H goes over all
basic subgraphs of order n whose perfect matchings fail to intersect Y . 2

Σ is nonsingular if and only if it has a perfect matching, and a maximum
matching M such that M ∩E(C) is not a perfect matching of C for every
balanced 0-type or unbalanced 2-type cycle C in Σ.

We are ready to prove Theorem 3.4.

Proof. [Proof of Theorem 3.4] Suppose that Σ is nonsingular, then
η(Σ) = 0 and rk(Σ) = n, where n is the order of Σ. Thus Σ has a basic
subgraph of order n. In particular, Σ has a basic subgraph whose edge set
forms a perfect matching of Σ.

The signed graph Σ has a perfect matching which intersects Y , other-
wise a0 would be null by Lemma 3.2.

Vice versa, let a0 =
P

H(−1)s(H)2t(H)σ(H) = 0, where n = 2m(Σ) and
H goes over all basic subgraphs of order n. LetH be the set of all such basic
subgraphs. Then H = D ∪W, where D is the set of all basic subgraphs of
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order n whose perfect matchings fail to intersect Y and W is the set of all
basic subgraphs of order n whose perfect matchings intersect Y . Then

a0 =
X
∆∈D

(−1)s(∆)σ(∆)2t(∆) +
X

W∈W
(−1)s(W )σ(W )2t(W ).

By Lemma 3.2 the sum over D is zero, thus

a0 =
X

W∈W
(−1)s(W )2t(W )σ(W ),

and this sum contains at least one term by hypothesis. Let W ∈ W. It
contains balanced of 2-type, unbalanced 0-type cycles and copies of K2. We
will not find balanced of 0-type and unbalanced of 2-type cycles becauseW
intersects Y . Let t−0 and t

+
2 be the number of unbalanced 0-type cycles and

of balanced 2-type cycles in W respectively. Then the contribution given
by W to a0 is

(−1)s(W )2t
+
2 (−1)t

−
0 2t

−
0 = (−1)s(W )+t−0 2t

+
2 +t

−
0 .

If t−0 = 0, W doesn’t contain any unbalanced 0-type cycle and s(W ) ≡
m(Σ) mod 2 since the order of its components is 4ki+2 and n = 2m(Σ) =Ps(W )

i=1 (4ki+2), that is m(Σ) =
Ps(W )

i=1 (2ki)+ s(W ). All such subgraphs as
W contribute to a0 with the same sign. Let

a00 =
X

W 0∈W0
(−1)s(W 0)2t(W

0),

where W 0 is the set of all W 0 ∈ W containing only balanced 2-type cycles
(t(W 0) = t+2 (W

0) and t−0 (W
0) = 0). We get a00 6= 0 if t+2 (W 0) ≥ 1.

Now suppose that t−0 (W ) = 1 so thatW has just one unbalanced 0-type
cycle C. Taking into account the sign σ(C) = −1,W contributes to a0 with
the term

aW = (−1)s(W )(−1)2t
+
2 (W )+1 = (−1)s(W )+12t

+
2 (W )+1,

but when we replace in W the cycle C with its two possible matchings
(made by an even number 2l of copies of K2), we get two subgraphs W

0
1

and W 0
2 in W 0 whose contributions aW 0

1
and aW 0

2
to a0 are contained in a00

and have total value

aW 0
1
+ aW 0

2
= 2 · [(−1)s(W )−1+2l2t

+
2 (W )]
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= (−1)s(W )−12t
+
2 (W )+1 = (−1)s(W )+12t

+
2 (W )+1 = aW .

In particular aW has the same sign as the summands in a00. Let t0 be
the number of unbalanced 0-type cycles of G and suppose that for any
order n basic subgraph W with 1 ≤ t−0 < t0 unbalanced 0-type cycles, the
sign sgn (aW ) is the same as sgn (aW 0) for any order n basic subgraph
W 0 containing only balanced 2-type cycles (eventually t+2 = 0)(induction
hypothesis). Let W be a basic subgraph containing all the t0 unbalanced
0-type cycles that are in G and let C be on of these cycles. Then

aW = (−1)s(W )(−1)t02t
+
2 (W )+t0 = (−1)s(W )+t02t

+
2 (W )+t0

is the contribution to a0(Σ) given by W . Now replace in W the cycle
C with its two possible matchings (made by an even number 2l of copies
of K2) and we get two subgraphs W1 and W2 in W whose contributions
aW1 = aW2 = a to a0(G) have total value

aW 0
1
+ aW 0

2
= 2a = 2 · [(−1)s(W )−1+2l+t0−12t

+
2 (W )+t0−1]

= (−1)s(W )+t02t
+
2 (W )+t0 = aW .

Since W1 and W2 have t0− 1 unbalanced cycles of 0-type, by the induction
hypothesis, the sign sgn (aWi) = sgn (a) (i = 1, 2) is the same as sgn (aW 0)
for any order n basic subgraph W 0 containing only balanced 2-type cycles.
This proves that all the summands in a0 have the same sign and a0 6= 0.
2

3.2. Cycle-spliced signed graphs with only odd cycles

In this section we consider cycle-spliced signed graphs with only odd cycles.
First we present some preliminary results to apply in the proof of the main
theorem. Let Σ = Cn be an odd cycle (n odd), then

|A(Cn)| = −a0 =
(
2 if σ(Cn) = +1
−2 if σ(Cn) = −1

Hence, an odd cycle is always nonsingular. If x is a vertex of an odd
cycle Cn, then Cn − x has an even number of vertices, so a0(Cn − x) =
|A(Cn − x)| = 1

|A(Cn − x)| = a0(Cn − x) =

(
1 if Cn is a 1-type cycle
−1 if Cn is a 3-type cycle
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Lemma 3.3. If Σ is a coalescence of H and K at a vertex v, then

det(Γ) = det(H) det(K − v) + det(H − v) det(K).

The following two results are contained in [26]. They also hold for
signed graphs since they are independent of the sign of edges.

Lemma 3.4 ([26]). Let Γ be a cycle-spliced graph with only odd cycles,
v an arbitrary vertex in Γ. Then Γ− v has a unique perfect matching.

Lemma 3.5 ([26]). Let Γ be an order n cycle-spliced graph with only odd
cycles, v a vertex of a pendant cycle of Γ. If every cycle of Γ has at most
two cut-vertices of Γ, then

(i) Γ− v has a unique basic subgraph of order n− 1;

(ii) det(Γ− v) = (−1)q, where q is the number of 3-type cycles in Γ.

Lemma 3.6. Let Σ be a cycle-spliced graph with only odd cycles. If every
cycle of Σ has at most two cut-vertices of Σ, then det(Σ) = (−1)q(2p+ −
2p−−2q++2q−), where p+ (p−) is the number of positive (negative) 1-type
cycles, q+ (q−) is the number of positive (negative) 3-type cycles in Σ and
q = q+ + q−.

Proof. Let n be the order of Σ. We use induction on the number of
cycles c(Σ) in Σ. If Σ = Cn, then det(Σ) = −a0 = σ(Cn) · 2 which proves
the assertion. Let c(Σ) > 1 and let C be a pendant cycle having a vertex
x in common with other cycles of Σ. By Lemma ??,

x det(Σ) = det(C − x) det(Σ− C + x) + det(C) det(Σ− C).

If C is a 1-type cycle, then det(C−x) = 1, det(Σ−C+x) = (−1)q(2p+−
2p− − σ(C · 2) − 2q+ + 2q−) (induction hypothesis), det(Σ− C) = (−1)q
by Lemma 3.5 (ii) and det(C) = σ((C)) · 2, thus we have

det(Σ) = 1 · (−1)q(2p+ − 2p− − σ(C) · 2− 2q+ + 2q−) + σ(C) · 2(−1)q =

(−1)q(2p+ − 2p− − 2q+ + 2q−).
If C is a 3-type cycle, then det(C−x) = −1, det(Σ−C+x) = (−1)q−1(2p+−
2p−+σ(C) · 2− 2q++2q−) (induction hypothesis), det(Σ−C) = (−1)q−1
by Lemma 3.5 (ii) and det(C) = σ(C) · 2, thus we have

det(Σ) = (−1)·(−1)q−1(2p+−2p−+σ(C)·2−2q++2q−)+σ(C)·2·(−1)q−1 =
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(−1)q(2p+ − 2p− − 2q+ + 2q−).
2

These results are exploited to prove the second of our main results.

Proof. [Proof of Theorem 1.8] Suppose the order of Σ is n, and suppose
Σ has p = p++p− 1-type cycles and q = q++ q− 3-type cycles. Since p+ q
is odd by hypothesis, n is odd, thus Σ has no perfect matching and a basic
subgraph of Σ of order n must have an odd number of cycles. Consider a
basic subgraphH of Σ of order n with exactly one cycle as a component, say
C. By Lemma 3.4, precisely one such basic subgraph of order n contains
C as a component (noting that Σ − C has a unique perfect matching).
This subgraph has (n− V (C))/2 copies of K2. If C is of 1-type, then the
contribution of H to a0 is

(−1)(n−V (C))/2+1σ(C)·2 = (−1)(n−4h−1)/2+1σ(C)·2 = (−1)(n−1)/2+1σ(C)·2.

The p basic subgraphs with a 1-type cycle totally contribute

(2p+ − 2p−)(−1)(n−1)/2+1

to a0. If C is of 3-type, then the contribution of H to a0 is

(−1)(n−V (C))/2+1σ(C)·2 = (−1)(n−4h−3)/2+1σ(C)·2 = (−1)(n−3)/2+1σ(C)·2.

The q basic subgraphs with a 3-type cycle totally contribute

(2q+ − 2q−)(−1)(n−3)/2+1

to a0. The sum of (2p+− 2p−)(−1)(n−1)/2+1 and (2q+− 2q−)(−1)(n−3)/2+1
is ± 2(p−p++ q+− q−), according to n = 4s+1 or n = 4t+3. This sum is
not divisible by 4 because p−p+ + q+ − q− is always odd as a consequence
of the fact that p+ q = p− + p+ + q+ + q− is odd.

Consider a basic subgraph H of order n with k ≥ 3 cycles. The corre-
sponding term in a0 contributed by such a subgraph has the form

(−1)p(H)2k
kY

j=1

σ(Cj)

which is divisible by 4, where p(H) is the number of components of H and
C1, . . . , Ck are the cycles in H. Hence, a0 is not divisible by 4 and thus
a0 6= 0, which proves that Σ is nonsingular. The proof of (i) is completed.
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Now we prove part (ii). Let C be a pendant cycle with a vertex x shared
by other cycles. Thus Σ−C is nonsingular (by 3.1 and 3.4). Now we observe
that A(Σ) has diag (A(C − x), A(Σ− C)) as a principal submatrix, where
diag (A(C − x), A(Σ − C)) denotes a 2 × 2 block diagonal matrix with
A(C − x) and A(Σ − C) as diagonal entries. As A(C − x) and A(Σ − C)
are both nonsingular, the rank of A(Σ) is at least n−1, which implies that
η(Σ) ≤ 1. (see [26], Theorem 1.2, part (ii) for unsigned graphs).

Part (iii) directly follows from Lemma3.6. 2

4. Particular configurations

In this section we handle the following particular configurations: 1) the
wedge of signed cycles, 2) cycle-spliced signed graphs with at most 3 cycles.

4.1. Wedge of signed cycles

Let Σ be the coalescence of two cycles Co (odd) and Ce (even). If Ce is
balanced of 0-type or unbalanced of 2-type, then η(Σ) = 1 whatever Co is.
If Ce is balanced of 2-type or unbalanced of 0-type, then η(Σ) = 0 whatever
Co is. This follows from Corollary 2.8. More generally, we can compute
the nullity of a wedge of n signed cycles of any type, all having a vertex v
in common.

Theorem 4.1. Let W be a wedge of n cycles all having a vertex v in
common. Let h be the number of odd cycles in W , k be the number of
even cycles, balanced of 0-type or unbalanced of 2-type, and l be the number
of even cycles, balanced of 2-type or unbalanced of 0-type. Let W0 be the
wedge of the h odd cycles. Then

η(W ) =

(
η(W0) + k if l = 0
k + l − 1 if l ≥ 1.

Proof. By Corollary 2.8, if Ce is balanced of 0-type or unbalanced of
2-type, then 1 = η(Ce − v) = η(Ce) − 1 = 2− 1 and η(W ) = η(Ce − v) +
η(W − Ce + v) = 1 + η(W − Ce + v). If Ce is a balanced of 2-type or
unbalanced of 0-type cycle, then 1 = η(Ce − v) = η(Ce) + 1 = 0 + 1 = and
η(W ) = η(W −v)−1 = η(W −Ce) = η(W0−v)+k+ l−1 = 0+k+ l−1 =
k + l − 1. 2

Example 4.2. In Fig. 4.1 the wedgeW of 5 signed cycles is depicted. The
signed graph W0 consists of the subgraph of W induced by the odd cycles
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C1, C4, and C5. The nullity η(W0) is determined by Theorem 1.8(i), and
it is η(W0) = 0. The even cycles C2 and C3 are, respectively, balanced of
2-type and unbalanced of 0-type, hence it is k = 0 and l = 2. According to
Theorem 4.1, it is η(W ) = 1.

Figure 4.1: The wedge of 5 signed cycles.

4.2. Cycle-spliced signed graphs with at most 3 cycles

Using some results contained in this paper, we deduce the nullity of all
cycle-spliced signed graphs Σ with c(Σ) ≤ 3. Recall that η(Σ) 6= C(Σ) by
Theorem 1.3 in [10].

Let us denote by C+i a positive i-type cycle and by C
−
i a negative i-type

cycle, for i = 0, 1, 2, 3.

Case c(Σ) = 1.

By Lemma 2.6, for Σ = C, η(Σ) = 2 if C is a C+0 or a C
−
2 cycle. Σ in

nonsingular otherwise.

Case c(Σ) = 2.

Our graphs are a coalescence of two cycles at a vertex v, Σ = C ∨v C 0.

η(Σ) = 3 if η(C) = η(C0) = 2.

η(Σ) = 1 if C and C 0 have one of the following properties:
a) C and C 0 are both even cycles and at least one of them has nullity 0.

b) C is odd and C 0 is even with η(C 0) = 2.

Marisol Martínez
fu-2
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c) C and C 0 are both odd cycles, of the same type (both of 1-type or both
of 3-type) but with opposite signs, or of different types (C of 1-type and
C 0 of 3-type) but with the same sign.

η(Σ) = 0 if C and C0 have one of the following properties:
a) C is odd and C 0 is even with η(C 0) = 0.
b) C and C 0 are both odd cycles, of the same type (both of 1-type or both
of 3-type) and with the same sign, or of different types (C of 1-type and
C 0 of 3-type) and with different signs.

Case c(Σ) = 3.
Let Σu =

W
uC

j =
W3
j=1C

j be a wedge obtained from 3 signed cycles,
C1, C2, C3, by identifying the unique common vertex u, and let Σu,v =
C1C2C3 be a sequence of 3 cycles, C1, C2, C3, where u is the unique com-
mon vertex to C1 and C2 and v is the unique common vertex to C2 and C3.

η(Σ) = 4 if and only if η(Cj) = 2 for j = 1, 2, 3, that is Cj is a C+0 or a
C−2 cycle, by Theorem 1.4.

If all cycles have even length and Σ = Σu, then
η(Σu) = 2 if and only if at least one among the C

j ’s has nullity 0, that
is at least one among the Cj ’s is a C−0 or a C

+
2 cycle, by Proposition 2.9,

part (ii).

For Σ = Σu with at least one odd cycle, we use Proposition 4.1 and get:

η(Σu) = 2 if one cycle, say C1, is odd and the others, C2 and C3

have both nullity 2, or, C1 and C2 are odd, η(C3) = 2 and η(W0) =
η(C1 ∨u C2) = 1 (see the c(Σ) = 2 case above).

η(Σu) = 1 if one cycle, say C1, is odd and the others, C2 and C3, are
both even and at least one of them has nullity 0, or, C1 and C2 are both
odd, with η(W0) = η(C1 ∨u C2) = 0 (see the c(Σ) = 2 case above) and
η(C3) = 2.

η(Σu) = 0 if C
1 and C2 are both odd and C3 is even of nullity 0.

Now we assume Σ = Σu,v.

Case 1: all cycles are even and at least one cycle has nullity 0.
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η(Σu,v) = 2 if it belongs to one of the following groups:
a) exactly one cycle has nullity 0 an the other two cycles have nullity 2 (1.6
and 2.8, part (i)).
b) Two cycles have nullity 0 and the other, with nullity 2, is a pendant cycle
or contains the two cut vertices, u and v, such that the distance d(u, v) is
even.
c) All cycles have nullity 0 and d(u, v) is even.

η(Σu,v) = 0 if at most one cycle has nullity 2 and d(u, v) is odd.

Case 2: at least one cycle has odd length.
We use this notation:
e0 means an even cycle of nullity 0,
e2 means a cycle of nullity 2 (it is necessarily even),
o means an odd cycle. A sequence of three of the above symbols rep-

resents a graph Σu,v made by cycles of the marked type, considered in the
indicated order. For example, e2e2o is a graph Σu,v made by the sequence
of two cycles of nullity 2 (with the vertex u in common) and an odd cycle
attached to the second e2 through the vertex v.

Case 2a. Exactly one cycle is odd.
η(Σu,v) = 2 in the cases: e2e2o, e2oe2.
η(Σu,v) = 1 for the following configurations: e0e0o and d(u, v) is even,

e2e0o, e0e2o and d(u, v) is even, e0oe0, e0oe2.
η(Σu,v) = 0 in the cases e0e0o with d(u, v) odd, and e0e2o with d(u, v)

odd.

Case 2b. Exactly two cycles are odd. The only even cycle can be pendant
or not.

Case 2b.1. The even cycle is pendant.
The following results can be obtained by Corollary 2.8 applied to the

even pendant cycle.
η(Σu,v) = 2 if Σu,v = ooe2 and the two odd cycles have the same type

and different signs or different types and the same sign (η(oo) = 1).
η(Σu,v) = 1 if Σu,v = ooe2 and the two odd cycles have the same type

and same sign or different types and different signs (η(oo) = 0).
η(Σu,v) = 0 if Σu,v = ooe0 whatever the two odd cycles are.

Case 2b.2. The even cycle is not pendant.
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The even cycle contains the two cut vertices u and v.

η(oe0o) = 1 if d(u, v) is odd and the two odd cycles have same type and
same sign or different types and different signs.

η(oe0o) = 0 in all the other cases (when d(u, v) is even, η(oe0o) = 0 can
be deduced by Lemma 2.3 in [25] applied to the components of Σ− {v}).

η(oe2o) = 2 if d(u, v) is even and the two odd cycles have the same
type and different signs or different types and same sign (this comes from
Lemma 4.3 (ii) of [10]).

η(oe2o) = 1 if d(u, v) is even and the two odd cycles have the same type
and the same signs or different types and different signs.

η(oe2o) = 0 in all other cases, that is if d(u, v) is odd, whatever the
two odd cycles are (from Lemma 2.4 in [26] applied to the components of
Σ− {v}).

The nullities η(Σu,v) = 1 or, η(Σu,v) = 0 when Σu,v = oe0o and d(u, v)
is odd, can be deduced by a direct computation of the coefficient a0 in the
characteristic polynomial ΦΣu,v(x) (see Lemma 3.1), together with Lemma
4.9 in [10].

η(Σ) = 0 for any Σ = Σu or Σ = Σu,v having only odd cycles, by The-
orem 1.8, part (i).

Summary for c(Σ) = 3.

The above results for c(Σ) = 3 can be summarized as follows:

η(Σ) = 4 if and only if η(Cj) = 2 for j = 1, 2, 3.

η(Σ) = 2 if and only if Σ is of one the following forms:

1) Σ = Σu and

1.1 all cycles are even and at least one of them with nullity 0.

1.2 One cycle is odd and the other two cycle have nullity 2.

1.3 Two cycles are odd, of same type and different signs or of different
types and same sign, and the other has nullity 2.

2) Σ = Σu,v and

2.1 all cycles are even, one has nullity 0 and the other two cycles have
nullity 2.

2.2 all cycles are even, two cycles have nullity 0, the other has nullity 2
and it is a pendand cycle or it contains the two cut vertices u and v such
that d(u.v) is even.

2.3 all cycles are even, have nullity 0 and d(u.v) is even.
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2.4 one cycle is odd and the other two cycles have nullity 2.

2.5 two cycle are odd, of the same type and different signs or of different
types and the same sign, and the even cycle of nullity 2 is pendant.

2.6 two cycle are odd, of the same type and different signs or of different
types and the same sign, the even cycle is not pendant and of nullity 2, and
d(u, v) is even.

η(Σ) = 1 if and only if Σ is of one the following forms:

1) Σ = Σu and

1.1 one cycle is odd and the other two cycles are both even, at least one
with nullity 0.

1.2 One cycle has nullity 2 and the other two cycles are both odd, of
the same type and the same sign or of different types and different signs.

2) Σ = Σu,v and

2.1 one cycle is odd, the other two cycles are even, at least one has
nullity 0, and d(u, v) is even when the odd cycle and the even one with
nullity 0 are both pendant.

2.2 two cycles are odd, of the same type and the same sign or of different
types and different signs, the remainig cycle is pendant of nullity 2 or it is
even, not pendant, such that d(u, v) is even.

η(Σ) = 0 if and only if Σ is of one the following forms:

1) Σ = Σu and at most one cycle is even and of nullity 0.

2) Σ = Σu,v and

2.1 all cycles are even, at most one of them has nullity 2 and d(u, v) is
odd.

2.2 one cycle is odd and pendant, the other two cycles are even, at most
one of them has nullity 2 and d(u, v) is odd.

2.3 two cycles are odd and the even cycle is pendant of nullity 0.

2.4 two cycles are odd, the even cycle of nullity 0 is not pendant, d(u, v)
is even, or, d(u, v) is odd and the odd cycles have different type and same
sign or same types and different signs.

2.5 two cycles are odd, the even cycle of nullity 2 is not pendant and
d(u, v) is odd.

2.6 all cycles are odd.

The general case when Σ has both even cycles and odd cycles is left to
be resolved. It is worth studying because a cycle-spliced graph is a special
cactus graph: the problem of singularity of cactus graphs seems interesting
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and deserves to be explored. We end by posing the following problem with
possible application to Chemical Graph Theory:

Problem 4.3. Determine the nullity of cycle-spliced (signed) graphs with
exactly two pendant cycles.
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