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A B S T R A C T

The increasing production of electric and electronic devices corresponds to the significant increase of e-waste.
These solid wastes contain a great amount of metals, thus representing a secondary source of precious elements,
within a circular economy context. The recovery of metals from waste thus provides a great opportunity to
decrease the energy consumption and the environmental impact associated with the typical processes for metal
extraction. Along with the conventional recovery methods (i.e., pyrometallurgy and hydrometallurgy), some
emerging technologies are being developed with a particular emphasis on the process intensification (PI).
Greener leaching agents, lower temperatures and the combination of different approaches are the most reported
methods to obtain a more sustainable metal recovery. In this perspective article, the recent advances in metal
recovery technologies are critically reviewed, focusing the attention PI strategies adopted to improve the re-
covery efficiency and reduce the environmental impact of the whole process. Some tolls, such as the design of
experiments (DoE), life cycle assessment (LCA), and machine learning are proposed to address the challenges and
improve the dissemination of innovative solutions.

1. Introduction

The growing demand for electrical and electronic equipment (EEE)
implies consequently the increase of the e-waste production, which is
accelerating faster than the other waste streams [1–3]. By 2030, EEE is
indeed projected to rise to 74.7 million metric tons due to the unprec-
edented rate at which electronic devices are being replaced [4].

As reported by Nithya et al. [5], all electrical or electronic equipment
discarded as waste are the as called e-waste (also called as WEEE). The
interest in these solid wastes arises from the presence of different
valuable materials, such as precious metals, that can be recovered in the
view of a circular economy. Typical WEEE is mainly composed of a
metallic part (about 60 %), plastic components (about 20 %) and other
materials (<20 %) such as glass, ceramics etc. [6] (Fig. 1). Hence,
several authors considered e-waste as a non-natural ore [5], highlighting
the possibility of extracting precious elements from waste as urban
mining [7].

Based on the existing technologies, more economically feasible,
sustainable and eco-friendly solutions for metal recycling should be
developed, with the aim of reducing the environmental impact and the
costs associated to these processes [2].

An extended literature survey is present about the most consolidated

techniques for metal recovery from WEEE, and some indications are
reported on the environmental impact of such techniques [8–10]. As
reported by Liu et al. [11], even the currently advanced technologies
employed for the recycling of WEEE produce large concentrations of
pollutants (i.e., heavy metals or persistent organic compounds) which
are then detected in the atmosphere.

The emerging methods, which are directed forward the application
of more environmentally friendly approaches should get a comprehen-
sive view both on the efficiency in the recovery of the desired elements
and on the possible release of pollutants in the environment. As possible
solutions, the utilization of greener leaching agents, as well as lower
temperatures are proposed [12–14]. Along with the development of new
technologies, some authors have proposed the possibility of modifying
or combine the existing ones, despite the largest part of them is still on a
laboratory scale [1].

In the present perspective, an overview on the recent advances in the
metal recovery techniques, and the most interesting solutions for a
process intensification (PI) will be discussed, highlighting the existing
challenges and drawbacks of this field. The environmental and techno-
economic analyses will be integrated with the circular economic
framework, highlighting the different technologies’ shortcomings and
limitations, and possible future viewpoints.

E-mail address: marica.muscetta@unina.it.

Contents lists available at ScienceDirect

Chemical Engineering and Processing - Process
Intensification

journal homepage: www.elsevier.com/locate/cep

https://doi.org/10.1016/j.cep.2024.109937
Received 30 July 2024; Accepted 6 August 2024

Chemical Engineering & Processing: Process Intensiϧcation 204 (2024) 109937 

Available online 8 August 2024 
0255-2701/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:marica.muscetta@unina.it
www.sciencedirect.com/science/journal/02552701
https://www.elsevier.com/locate/cep
https://doi.org/10.1016/j.cep.2024.109937
https://doi.org/10.1016/j.cep.2024.109937
https://doi.org/10.1016/j.cep.2024.109937
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cep.2024.109937&domain=pdf
http://creativecommons.org/licenses/by/4.0/


2. Metal recovery from WEEE – Existing technologies, recent
advances and main drawbacks

Generally, the recycling process involves different steps, as depicted
in the Fig. 1.

The process generally begins with a pre-treatment (i.e., dismantling,
size reduction and physical separation), through which non-ferrous
metals are separated from the other components [15,16].

Dismantling, size reduction and physical separation are consolidated
approaches, and can be modified based on the successive steps to
perform [17,18]. However, the formation of fine dust, as well as the high
energy consumption accompanying the crushing step are among the
obstacles involved in this process [19]. Despite the pretreatment being
widely employed on industrial scale, some authors have recently pro-
posed the possibility of treating the printed circuit board as obtained
after the dismantling [20,21]. This approach can certainly reduce the
costs of the pre-treatment but can negatively impact on the dissolution
efficiency, due to diffusive phenomena occurring in the system when the
successive steps are performed [22–24].

After the pretreatment, the common techniques for the effective
metal recovery are pyrometallurgical, hydro-metallurgical and bio-
hydrometallurgical routes.

Pyrometallurgical approach can be considered as the most
consolidated technique for metal recovery, in which the main advantage
is represented by the possibility of minimizing mechanical pretreatment
of the solid waste. The separation of the desired metals from WEEE
occurs through the use of high temperatures. Specifically, the waste
materials are subjected to incineration, sintering, and melting at high
temperatures, with smelting furnace or plasma processes among the
most used incinerator employed [4]. Among the disadvantages, high
energy requirement and costs, low selectivity, and the emission of
hazardous gases are the most important and highlight the necessity of
developing possible different solutions [17,4,25]. Hydrometallurgy is
the second most reported technique for metal recovery, involving
different steps such as leaching, purification and recovery. The process is
carried out in aqueous solution, with advantages as the lower costs and
environmental impact with respect to the pyrometallurgical ones, as
well as the good control of impurities. The leaching step is typically
performed in the presence of strong acids (i.e., H2SO4, HNO3, HCl, etc.),

thiourea, cyanides, thiosulphate, ferric chloride or aqua-regia [4].
Despite the better characteristics with respect to the pyrometallurgy,
these processes have low selectivity for the valuable metals (i.e.,
precious metals), and the production of large amounts of wastewater
and emissions of chlorine gas [1]. Recently, there has been a growing
interest in the bio-hydrometallurgical pathways as a possible
alternative option for the dissolution of metals from e-waste, due to
their cost-effectiveness and eco friendliness [26]. With reduced green-
house gas emissions, the mechanism leads the selective recovery of some
metals from WEEE, through the use of bacteria, which are able to
secreting acids, ligands, and lixiviants for solubilization. However, this
technology is still at a pilot scale, and several researchers are currently
devoted to (i) the possibility of using bacteria with high resistance to
different environments and (ii) the optimization of the factors affecting
the leaching efficiency [27].

As is evident, and widely reported in the literature findings [4,
28–30], each of the above-mentioned technologies presents some dis-
advantages, and the design of new strategies or the combination of
different low-cost and eco-friendly approaches in the field of metal re-
covery is urgent. Moreover, the heterogeneous nature of the WEEE leads
the necessity of controlling process parameters based on the solid waste
[31].

In this context, PI can (i) enhance the performance of the metal re-
covery, (ii) reduce the environmental impact of the adopted processes
and (iii) reduce the costs associated to the whole process [4,6]. In the
next section, some considerations on possible PI will be discussed,
focusing the attention on the current challenges and opportunities.

3. Process intensification in metal recovery

PI in metal recovery has gained great attention due to the possibility
of increase the profit. As a result of the PI, process plants are smaller, the
environmental impact and the energy consumption are reduced, and
some disadvantages of the existing technologies are overcome. Some
years ago, some authors proposed the combination of extraction and
stripping (single stage) in the liquid emulsion membrane process as a
PI for the extraction of Ru, avoiding the stripping stage commonly
adopted in these processes [32]. The possibility of reducing the number
of stages in the extraction process is clearly able to reduce the energy

Fig. 1. Schematization of the main steps involved in the metal recovery process.
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requirement, which is in accordance with the PI approach.
Furthermore, some authors directed their efforts in the minimiza-

tion of carbon footprint and atmospheric emissions [33] in the py-
rometallurgical route. Zhou and co-workers [34] critically reviewed
some challenges and evolutions in the pyrometallurgic recycling of
spent lithium-ion battery, highlighting how using lower temperatures
can avoid the damage of the electrolyte structures as well as reducing
pollution, but involves additional energy and costs consumption.

In the hydrometallurgical methodology, as alternative to the strong
acids commonly employed, some authors have reported the use of bio-
based organic acids such as acetic, lactic, formic or citric acids. These
substances drive towards more sustainable strategies, reducing the
environmental impact, the costs and the operating conditions of the
process [35]. In some cases, the use of ligands in the leaching solution is
proposed in combination with greener oxidizing agents (i.e., O2 or
H2O2) [36].

Moreover, some authors have recently proposed the combination of
pyrometallurgical processes with bio/hydro-metallurgical routes for PI
purposes. With specifical focus on lithium-ion batteries for instance, He
et al. [37] highlighted how the combination of different techniques
can reduce the environmental impact due to the application of milder
conditions in terms of temperatures (below 1000 ◦C) and pH.

In this context, the combination of different sustainable tech-
nologies was recently proposed for the recovery of precious or semi-
precious metals from a variety of electronic waste. As an example, the
different sustainable stages can be adopted for the recovery of nickel
from exhausted nickel-containing multilayer ceramic capacitors
(MLCCs) [38]. Specifically, after the dismantling of MLCCs from the
e-waste and the crushing with a pestle and a mortar, a leaching under
mildly acidic conditions in the presence of NaCl and CuCl2 can be carried
out for the oxidation of the metallic Ni. Subsequent photodeposition and
pH adjustment stages are useful to effectively separate the metals pre-
sent in the system (i.e., Ni and Cu). Similarly, the recycling of palladium
from spent catalysts can be achieved, noticing the effective recovery of
the metal by adopting the above-mentioned leaching procedure in as-
sociation with a photodeposition stage through which the formation of
zero-valent palladium deposited on ZnO is obtained [39]. The use of
ZnO allows dissolving it at pH lower than 6.30, thus obtaining the pure
metal (i.e., Pd).

Furthermore, as a PI of the common acid-based leaching processes,
subcritical water extraction and microwave-assisted extraction
were employed for the recovery of Ni, Co, La, Nd, and Ce from spent
NiMH batteries [40]. Subcritical water extraction resulted in the highest
recovery efficiency, while microwave-assisted extraction demonstrated
great potential in terms of energy-effectiveness in comparison with the
other techniques. Conversely, the longest reaction time and the highest
energy consumption were required for the common leaching process.
Moreover, as a possible PI for metal recovery, some authors have
identified the adoption of microfluidics devices [6], which are able to
improve the mass and heat transfer and, consequently, the efficiency of
the process.

However, all these proposed solutions are still far from the large-
scale application, and more studies are needed. In this regard, for the
development of new solutions on a lab scale it is mandatory a design of
experiment (DoE). Sujatha et al. [41] for instance, used the statistical
approach for the optimization of a Ni extraction process by green
emulsion liquid membrane. Firstly, they evaluated the most important
parameters affecting Ni extraction through a parameter screening using
Plackett Barman design. Then, the identified parameters were analysed
and optimized for PI purposes. Similarly, Hemmati et al. [42] investi-
gated indium extraction from WEEE through flat sheet supported liquid
membrane via response surface methodology (RSM), and artificial
neural networks (ANN). Through a low number of experiments, the ef-
fect of different parameters was explored and modelled, and the optimal
conditions were identified. The use of RSM was also reported by others
for the selective recovery of Cu [43,44], Cu and Au [45], Ag and Au [46],

demonstrating the potential of this approach in the process optimiza-
tion, as well as in the development of new processes.

Furthermore, combination of different bio-based processes (i.e.,
biosorption, bioleaching, biomineralization) was identified as an inter-
esting methodology for the efficient and selective recovery of metals
fromWEEE [47]. However, some challenges to the practical applications
are still limiting this solution. Indeed, along with the environmental
interests, the economic aspects are crucial for the effective development
of new commercial-available technologies [48].

In this context, a techno-economic assessment of an integrated
recovery system based on bio and hydrometallurgy was reported by Van
Yken et al. [49]. They identified, even on a lab scale, the parameters (i.
e., pH and pulp density), able to optimize the metal leaching and reduce
the operating costs of the process. Similarly, a techno-economic evalu-
ation of a miniaturized Cu-solvent extraction plant (MSXP) was recently
described by some authors [50]. They demonstrated a great reduction in
experimental costs using MSXP with respect to the most employed de-
vices, along with a reduction of the start-up time, etc. The proposed
set-up has proven to be a great ally in the PI approaches, due to the
possibility of improving the efficiency of the experiments on a lab and
pilot scale, which represent the first steps for the development of new
processes for metal recovery.

Moreover, a PI of the process [39] for the recovery of Pd from spent
materials (mentioned in the previous section) was reported recently
[51]. Specifically, the possibility of recovering the streams coming from
the different units (i.e., leaching and photodeposition) was evaluated.
Furthermore, the photocatalyst employed in the photodeposition unit
was prepared different times starting from exhaust effluents generated
during the recovery process. Then, to assess the environmental impact of
the procedure, a life cycle assessment (LCA) was performed on a lab-
oratory scale, which highlighted the critical points and guided the
exploration of different configurations able to enhance the beneficial
effects of the process [10]. LCA can be a useful tool to evaluate possible
improvements for the metal recovery processes, allowing the environ-
mental assessment of the whole methods in accordance with ISO 14,
040/14,044 [52]. However, a few LCAs studies are present on these
technologies, particularly on lab scale [53]. The lack in this topic was
also found by Kouloumpis and Yan [54], that conversely analysed the
environmental impact of co-processing of coal mine and electronic
wastes, demonstrating a great reduction in the toxicity and an
enhancement of the climate change impact with respect to common
treatment. Despite the growing number of studies following this
approach, some obstacles such as data availability and ambiguity still
limit its diffusion; however, it is desirable to overcome these problems,
and associate LCA with other approaches such as machine learning and
simulation to assist the development of interesting solutions for metal
recovery.

4. Conclusions

Due to the growing WEEE production, the development of alterna-
tive sustainable and cost-effective solutions for metal recovery is urgent.
The conventional methods, despite well-established on industrial scale,
have different limitations such as the high environmental impact, the
high costs and the low selectivity. Among the emerging strategies, the
use of greener leaching agents and the development of bio-based sys-
tems are the most interesting.

Nevertheless, irrespective from the adopted methodologies, a
rational approach should be applied when a new alternative solution is
proposed, as well as when a PI is suggested. As briefly described in the
Fig. 2, a proper design of experiment (DoE) is crucial to recognise the
most affecting parameters and to optimize the process starting from a lab
scale. Moreover, life cycle assessment (LCA) should be employed to
evaluate the environmental feasibility of the new proposed technolo-
gies, identifying the critical points and possible modifications. Finally,
the techno-economic evaluation, even on a lab and pilot scale, is decisive
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to understand the applicability of the system on commercial levels.
Through the use of these tools, future research can direct their efforts in
overcoming current limitations in the metal recovery field, starting from
laboratory scale up to industrial levels, by offering suitable solutions
both from economic and environmental point of view.
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