iScience, Volume 27

Supplemental information

MFN2 coordinates mitochondria motility

with α -tubulin acetylation and this regulation

is disrupted in CMT2A

Atul Kumar, Delfina Larrea, Maria Elena Pero, Paola Infante, Marilisa Conenna, Grace J. Shin, Vincent Van Elias, Wesley B. Grueber, Lucia Di Marcotullio, Estela Area-Gomez, and Francesca Bartolini

Figure S1

Figure S1. HDAC inhibition restores acetylated tubulin levels and mitochondria association to MTs in Mfn2 KO MEFs, Related to Figure 1. (A) Representative immunoblot of acetylated (Acet), detyrosinated (deTyr), total α-tubulin (DM1A), mitofusin-2 (MFN2) and GAPDH levels

in whole cell lysates from WT and Mfn2 KO MEFs incubated with control vehicle or 10 nM of trichostatin A (TSA) for 6 h and 12 h prior to lysis. (B) Quantification of acetylated tubulin relative to control levels (%) in WT and Mfn2 KO MEFs treated as in A. (C) Representative immunofluorescence staining of acetylated (Acet), detyrosinated (deTyr) and tyrosinated (Tyr) tubulin in WT and Mfn2 KO MEFs incubated with control vehicle or TSA for 6 h. Scale bar, 10 μm. (D) Quantification of acetylated to tyrosinated tubulin (bulk tubulin marker) immunofluorescence signal ratio measured in individual cells treated as in C. (E) Representative immunofluorescence staining of mitochondria and tyrosinated tubulin (Tub) in Mfn2 KO MEFs incubated with control vehicle or 10 nM of TSA for 6 h. Scale bar, 5 µm. (F) Quantification of mitochondria associated with MTs (identified by the bulk tubulin marker tyrosinated tubulin) using Mander's coefficient. (G) Representative immunoblot analysis of MFN2, Acetylated-mirol (Lys 105 MIRO1), total miro1 (MIRO1) and GAPDH levels in whole cell lysates from WT and Mfn2 KO MEFs. (H) Quantification of total MIRO1 levels (relative to WT) in WT and Mfn2 KO MEFs. Data are median with interquartile range from 3 independent experiments * p<0.05; ** p<0.01; *** p<0.001; **** p<<0.001 by Kruskal-Wallis test (B,D and F) or Mann-Whitney U test (H). NS non-significant.

Figure S2. HDAC inhibition restores acetylated tubulin levels in Iqgap1 KO MEFs, Related to Figure 2. (A) Representative immunoblot of WT and Iqgap1 KO whole MEF lysates. DM1A, total α -tubulin, Acet, acetylated tubulin, deTyr, detyrosinated tubulin. GAPDH, loading control.

(B) Representative immunofluorescence staining (images are maximum projections from z-stacks) of acetylated (Acet), detyrosinated (deTyr) and tyrosinated (Tyr) tubulins in WT and Iqgap1 KO MEFs. Scale bar, 10 µm. (C) Quantification of detyrosinated tubulin signal in Iqgap1 KO MEFs relative to WT levels. (D) Quantification of acetylated tubulin signal in Iqgap1 KO MEFs relative to WT levels. (E) Representative immunoblot of acetylated (Acet), detyrosinated (deTyr), total (DM1A) α-tubulin, IQGAP1, mitofusin-2 (MFN2) and GAPDH levels in WT and Iqgap1 KO MEFs incubated with 10 nM of the HDAC inhibitor trichostatin A (TSA) or vehicle control for 6 h or 12 h prior to lysis. (F) Quantification of acetylated tubulin (Acet) levels relative to vehicle control (%) in WT and Iqgap1 KO MEFs incubated with 10 nM TSA for 6 or 12 h. (G) Representative immunofluorescence staining (images are maximum projections from z-stacks) of WT and Iqgap1 KO MEFs incubated with 10 nM of TSA or vehicle control for 6 h prior to fixation. Scale bar, 10 µm. (H) Quantification of acetylated (Acet) to tyrosinated (Tyr) tubulin immunofluorescence signal ratio measured in WT and Iqgap1 KO MEFs as in G. Data are median with interquartile range. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001; ns non-significant by Mann-Whitney U test (C and D) or Kruskal-Wallis test (F and H). (n=3-4 independent experiments).

Figure S3. Restoring tubulin acetylation levels rescues mitochondria dynamics in Iqgap1 KO MEFs, Related to Figure 2. (A) WT and Iqgap1 KO control and trichostatin A (TSA) treated (10 nM, 6 h) MEFs were stained with mitoTracker Red. Scale bar, 10 μ m. (B) Mitochondria morphology is calculated as ratio of length /width in cells treated as in A. (C) Relative distribution of mitochondria from the cell center in MEFs treated as in A. (D) Mitochondrial displacement velocity near the cell center and periphery in MEFs as in A. Live-imaging was performed for 3

min (1f/2s). (E) Schematic of the enzymes involved in the detyrosination/retyrosination α -tubulin cycle. Note that detyrosination of α -tubulin occurs on MTs while α -tubulin retyrosination occurs on the soluble tubulin heterodimer. TCPs, tubulin carboxypeptidases; deTyr, detyrosinated α -tubulin; Tyr, tyrosinated α -tubulin. TTL, tubulin tyrosine ligase. (F) Representative immunoblot of whole cell lysates from WT and Iqgap1 KO MEFs depleted of tubulin tyrosine ligase (TTL) expression by shRNA transfection for 3 days. TTL, tubulin tyrosine ligase; DeTyr, detyrosinated tubulin; Acet, acetylated tubulin; GAPDH, loading control. (G) Mitochondria morphology is calculated as ratio of length/width in cells depleted of TTL expression. (I) Mitochondrial displacement velocity near the cell center and periphery in MEFs depleted of TTL expression. Live-imaging was performed for 3 min (1f/2s). Data are median with interquartile range n = 150-250 mitochondria from 15-30 cells in 3-4 independent exp. *, p≤0.05; **, p≤0.01; ns non-significant by Kruskal-Wallis test.

Figure S4. MFN2 regulates HDAC6 levels and localization of ATAT1, Related to Figure 3. (A) Representative immunoblot of HDAC6 and ATAT1 levels in WT and Mfn2 KO whole MEF lysates. GAPDH, loading control. (B) Quantification of expression level of HDAC6 and ATAT1 in Mfn2 KO MEFs relative to WT MEFs. (C) Representative immunofluorescence staining of ATAT1 and HDAC6 in WT and Mfn2 KO MEFs. (n=200-225 cells). Scale bar, 10 μm. (D) Mitotic index assessed by nuclear DAPI staining in WT and Mfn2 KO MEFs. (n=150 cells). (E) Representative immunoblot of cytosolic and nuclear envelope/endoplasmic reticulum (ER)

fractions (T=total lysate; C=cytoplasmic fraction; NER= nuclear ER fraction) from WT and Mfn2 KO MEF lysates. (F) Quantification of ATAT1 levels in cytoplasmic versus NER fraction expressed as ratio of intensity values from analysis as in E. (G) Representative immunoblot analysis of mitochondrial and cytoplasmic fraction from WT and Mfn2 KO MEF lysates. (H) Quantification of ATAT1 level in mitochondria versus cytoplasmic fraction expressed as ratio of intensity values. Data are median with interquartile range from 3-4 independent experiments, * $p \le 0.05$, ** p < 0.01; ns: non-significant by Mann-Whitney U test.

Figure S5. ATAT1 associates with mitochondria outer membranes at sites of contact with nicked MTs, Related to Figure 3. (A) Mitochondrial networks (mitoTracker Red) and MFN2/ATAT1 co-localizing puncta in a WT MEF cell imaged by Airyscan confocal microscopy (maximum projection is shown from a z-stack) and displayed by volume rendering and pseudocolors using Imaris software (Bitplane, Concord, MA). In the 3D rendering mitochondria

are represented in yellow and MFN2/ATAT1 co-localizing puncta are represented in white. Scale bars, 5 μ m. (B) Airyscan confocal image (maximum projection is shown from a z-stack) showing ATAT1 punctuate localization at mitochondria (mitoTracker Red) and tyrosinated tubulin (tub) in a WT MEF cell. The white arrowhead shows a nick in the MT lattice. Scale bars, 10 μ m and 5 μ m in the zoomed image. (C) Interaction between transfected Flag-ATAT1 and MFN2, but not the outer mitochondrial protein TOMM20 or the inner mitochondrial protein COX4, was detected in HEK293T cells by immunoprecipitation (IP) of FLAG-ATAT1 followed by immunoblot with the indicated antibodies.

Figure S6. MFN1-dependent regulation of acetylated tubulin levels has no impact on HDAC6 protein levels and loss of Mfn2 expression suppresses endogenous ATAT1/miro binding in

MEFs, Related to Figure 4. (A) Representative confocal immunofluorescence images (maximum projections from z-stacks) showing mitochondria (mitodsRed) in WT MEF cells overexpressing Myc-MFN2 WT, Myc-MFN2 R94W, Myc-MFN2 T105M. Scale bar, 10 µm. (B) Quantification of HDAC6 levels in WT and Mfn2 KO MEFs upon overexpression of WT and mutant MFN2. (C) Quantification of HDAC6 levels in WT and Mfn2 KO MEFs upon overexpression of MNF1. (D) Representative immunoblot of acetylated tubulin (Acet tub), HDAC6 and ATAT1 levels in WT and Mfn1 KO cells. (E) Quantification of Acet tub, HDAC6 and ATAT1 levels in WT and Mfn1 KO cells as in D. (F) Representative immunofluorescence staining (maximum projections from zstacks, 0.2 mm step size) of acetylated (Acet), detyrosinated (deTyr) and tyrosinated (Tyr) MTs in WT and Mfn1 KO MEFs. Scale bar, 10 µm. (G) Quantification of acetylated tubulin signal in Mfn11 KO MEFs relative to WT levels from images as in F. (H) Representative confocal immunofluorescence images (maximum projection from z-stacks) of Miro1 and ATAT1 PLA puncta in WT and Mfn2 KO MEFs. Scale bar, 10 µm. (I) Quantification of PLA puncta per cell in WT and Mfn2 KO MEFs as in H. Data are median with interquartile range from 3 independent experiments * p<0.05, ** p<0.01, *** p<0.001 by Kruskal Wallis test (B,C) and Mann-Whitney U test (E,G,I).

Figure S7. ATAT1 localization to mitochondria is dependent on MFN2 expression in primary adult DRG neurons and loss of acetylated tubulin precedes axonal degeneration in Mfn2 KD

DRG neurons, Related to Figure 5. (A) Representative Airyscan confocal image (single plane) of ATAT1 and MFN2 at mitochondria (mitoTracker Red) in adult DRG neurons (14 days). Zoomed image is shown from the boxed area. Scale bars, 10 µm. (B) Linescan analysis of ATAT1 and MFN2 signals from the white line shown in the zoomed image. (C) Quantification of MFN2 and ATAT1 co-localization as in (A) by Mander's correlation coefficient. N=20 cells (D) Airyscan confocal images (single plane) of TOMM20 (red) and ATAT1 (green) signals in shNC and shMfn2 KD adult DRG neurons (14 days) infected at 7 DIV. Scale bars, 20 µm and 5 µm in the zoomed image. (E) Line scan analysis (from selected blues bars shown in D) at proximal and distal axonal segments in DRG neurons treated as in (D). (F) Mander's coefficient analysis of TOMM20 and ATAT1 signals from images of neurons treated as in (D) N=25 cells. (G) Neurofilament staining of shNC and shMfn2 KD DRG neurons infected for either 3 or 5 days starting at 7 DIV. Scale bar, 50 µm. (H) Degeneration index of axons in shNC and shMfn2 silenced DRG neurons treated as in (G). (I) Representative immunoblots of MFN2 and acetylated tubulin (Acet) levels in DRG neurons treated as in (G). (J) Quantification of acetylated tubulin (Acet tub) levels from immunoblot analysis as shown in (I). GAPDH, loading control. Data are median with interquartile range from 3 independent experiments. * p<0.05, ** p<0.01; *** p<0.001 ns: non-significant by Mann-Whitney U test.

Figure S8. ATAT1, but not mutant MFN2, rescues axonal degeneration in MFN2 depleted DRG neurons, Related to Figure 5. (A) Neurofilament staining of shMfn2 KD DRG neurons at

14DIV overexpressing the mitochondrial targeting domain of OMP25 alone or the fusion protein ATAT1-OMP25 by lentiviral infection for 5 days. Scale bar, 50 μ m. (B) Quantification of degree of axonal degeneration in shNC and shMfn2 KD DRG neurons as in A (9-19 random fields from 3 independent experiments). (C) Neurofilament staining of shNC DRG neurons at 7DIV overexpressing R94W or T105M Mfn2 mutants by retroviral infection for 5 days prior to treatment with TSA (10 nM, 6 h), fixation and immunostaining. Scale bar, 50 μ m. (D) Quantification of degree of axonal degeneration in adult DRG neurons (14DIV) as in C (15-20 random field from 3 independent experiments). (E) Neurofilament staining of shMfn2 KD DRG neurons overexpressing R94W or T105M Mfn2 mutants by retroviral infection for 5 days prior to treatment with TSA (10 nM, 6 h), fixation and immunostaining. Scale bar, 50 μ m (F) Quantification of degree of axonal degeneration in adult DRG neurons (14DIV) as in E (15 random field from 3 independent experiments). Data are median with interquartile range from 3 independent experiments. * p<0.05, ** p<0.01; *** p<0.001 ns: non-significant by Kruskal Wallis test.

	WT	Mfn2 KO	WT+ TSA	Mfn2 KO + TSA
Growth rate (µm/s)	0.06 ± 0.01	0.11 ± 0.008 *	0.04 ± 0.007	0.08 ± 0.005 *
Shrinkage rate (µm/s)	0.08 ± 0.004	0.11 ± 0.009 *	0.07 ± 0.008	0.08 ± 0.005 *
Catastrophe freq. (s-1)	0.06 ± 0.006	0.06 ± 0.006	0.05 ± 0.004	0.05 ± 0.006
Rescue freq. (s-1)	0.08 ± 0.006	0.08 ± 0.006	0.07 ± 0.006	0.09 ± 0.004
% Growth	39.5 ± 1.32	49.95 ± 0.95 ***	20.04 ± 1.28 ****	22.4 ± 0.90 ****
% Shrinkage	32.05 ± 0.87	37.68 ± 1.77 *	18.25 ± 1.37 ****	16.05 ± 1.42 ****
% Pause	20.68 ± 0.71	17.1 ± 1.37	63.5 ± 0.64 ****	62.13 ± 1.68 ****
MT lifetime (s)	60.25 ± 2.05	61.5 ± 1.93	56.5 ± 3.66	60.25 ± 1.43
MT dynamicity (µm/min)	6.6 ± 0.64	11.63 ± 0.43 ***	4.17 ± 0.44 *	4.858 ± 0.46 ****
Number of MTs	22	22	24	24

Table S1. HDAC inhibition normalizes MT dynamics in Mfn2 KO MEFs, Related to Figure 2. MT dynamics were measured from time-lapse analysis of GFP-tubulin-labeled MTs using epifluorescence microscopy in WT and Mfn2 KO MEFs treated with 10 nM trichostatin A (TSA) for 6 h. Live imaging of MT dynamics was performed for 5 min (1f/5s). * in black represents statistical comparison with WT control while * in red represents statistical comparison with Mfn2 KO control. Data are mean \pm SEM from 3 independent experiments. * p<0.05; ** p<0.01; *** p<0.001; **** p<<0.001 by 2-way ANOVA with Dunnett's multiple comparison.

	wт	lqgap1 KO	WT+ TSA	lqgap1 KO + TSA
Growth rate (µm/s)	0.06 ± 0.008	0.13 ± 0.004 ***	0.04 ± 0.004	0.095 ± 0.006 **
Shrinkage rate (µm/s)	0.04 ± 0.010	0.12 ± 0.006 ***	0.03 ± 0.004	0.09 ± 0.004
Catastrophe freq. (s-1)	0.07 ± 0.004	0.06 ± 0.007	0.06 ± 0.003	0.06 ± 0.004
Rescue freq. (s-1)	0.07 ± 0.006	0.08 ± 0.010	0.07 ± 0.007	0.08 ± 0.006
% Growth	45.5 ± 2.021	45 ± 1.354	23.75 ± 0.85 ***	25.25 ± 1.54 ***
% Shrinkage	31.5 ± 2.63	30.18 ± 2.254	27.25 ± 3.19	22.5 ± 0.86 ***
% Pause	22.5 ± 1.041	24.75 ± 1.652	50 ± 2.48 ***	51.75 ± 1.10 ***
MT lifetime (s)	47.5 ± 2.533	51 ± 1.472	49.5 ± 2.32	51.25 ± 1.79
MT dynamicity (µm/min)	5.22 ± 0.317	8.17 ± 0.606 **	3.32 ± 0.24 **	3.77 ± 0.33 **
Number of MTs	20	21	25	25

Table S2. HDAC inhibition rescues MT dynamics in Iqgap1 KO MEFs, Related to Figure 2. MT dynamics were measured from time-lapse analysis of WT and Iqgap1 KO MEFs transfected with EGFP-tubulin prior to treatment with vehicle or 10 nM trichostatin A (TSA) for 6 h. Live imaging was performed for 5 min (1f/5s). * black represents statistical comparison with WT control and * red represents statistical comparison with Iqgap1 KO control. Data are mean \pm SEM from 3 independent experiments. * p<0.05; ** p<0.01; *** p<0.001; by 2-way ANOVA with Dunnett's multiple comparison.

INTERNAL	Corresponding Lipid	Concentration
STANDARD	Class	(ug/ul)
IS AcylPG 14:0- 28:0	Acyl PG, NAPE, NAPS	0.046799614
IS BMP 28:0	BMP	0.015298133
IS CE C17	CE	78.59098931
IS Cer C17:0	Cer, dhCer	0.758320608
IS Chol d7 b	Free Cholesterol	63.78791732
IS DG 4ME	diacylglycerols	0.640874053
IS dhSM d18:0/12:0	dihydrosphingomyelins	2.579623778
IS DMPC	AC	12.34642208
IS GalCer d18:1/12:0	MhCer	1.039897431
IS LacCer d18:1/12:0	LacCer	0.259594347
IS LPC 13:0	LPC	12.34642208
IS LPE 14:0	LPE	0.098349468
IS LPI 13:0	LPI	0.07642123
IS MG C17	MG	0.242952978
IS PA 28:0	РА	0.068072997
IS PC 28:0	PC	12.34642208
IS PE 25:0	PE	8.839285714

IS PG 12:0/13:0	PG	0.446428571
IS PI 12:0/13:0	PI	2.232142857
IS PS 28:0	PS	11.92531331
IS SM d18:1/12:0	SM	13.39285714
IS Sulf d18:1/12:0	Sulf	0.225924621
IS TG 50:0 d5	TG	0.498018035

Table S3. List of internal standards used to calculate the concentrations of correspondinglipid classes, Related to Figure 2.

Data S1. Map of the newly generated lentiviral plasmid expressing the mitochondrially targeting OMP25 domain alone, Related to Figure S8

GenBank: AF107295.1

GenBank Graphics

>AF107295.1 Rattus norvegicus outer membrane protein (OMP25) mRNA, complete cds; nuclear gene for mitochondrial product; cds 456...1076; c-terminal domain GAGAGCCCAGCCTTCTCCCTGGCTCCTATTTAAGCATCAGGCAAAGACCGTGGGTCCCAGCAACAGCAGT CACGTGGCCTGGCACCCATACAGCTCCTGATTGCTGCGGCTGGAAGGAGCCTGTGATTCTGCGTGAGTGT GGGGTCCTTGGGTATACAGTCAGCCGAGGTAGAGGTGGGCTGGCCTAGGACTGTACACTTCTCTAGGAGC TGGGCTTAACTAAAACAGAAGAGATTGCGGTTAGACATCAAGAGGAACTCAGACCCGTGGGAAAGAACCA GGACCTGAGGCAAAGGCGAGATTTGGGTGGTGGACGGGGGGACAGGGAGACTCTTCACAGTCCTCACAGGA GCGGCACGGAGCTTGATTCACCTTCACCTGCGCCGGGCACCCGCTGACCCCGGGTTTCCGCCCGGAGAGC AGTCAGATATGAACGGACGGGTGGATTATTTAGTCTCCGAGGAAGAGATCAACCTGACCAGAGGACCCTC GGGGCTGGGCTTCAACATCGTCGGTGGGACAGATCAACAGTATGTCTCCAATGACAGTGGCATCTACGTC AGCCGCATCAAAGAGGATGGGGCTGCGGCCCGGGATGGGCGGCTCCAGGAGGGTGATAAGATCCTCTCGG TAAATGGCCAAGACCTGAAGAACCTGTTGCACCAAGATGCCGTAGACCTCTTCCGTAATGCAGGATATGC CGTGTCCCTGAGAGTGCAGCACAGGTTACCAGTGCAGAATGGACCTATAGTTCATCGAGGCGACGGAGAG

CCGAGTGGAGTTCCTGTAGCTGTGGTGCTGCCAGTGTTTGCCCTTACCCTGGTAGCAGTTTGGGCCT

TCGTGAGATACCGAAAGCAGCTCTGAGATGCCTGTTGTCTTCCAGTGTGTCCGATGAGCTAACTATCTCT ${\tt CTCACTCACCATCTCGACATCCTCCCCTAGTCTTCCCTTCCCACATAGCCAACACATGATTTAAAGTGACT}$ GCTTATCACCCGAAACCTTGCTGTTCAAAATCTCCAAGACTTCACATTCTAATGGAAGAGTAAAGAGATT ATTTGAAGAAAGCTGGGGGGGGGGGGGGGGGGGGGCCTTGCTTAGAATAAATGAGAAGTTACATATTTTACTAGAAC TGCCAATAAAAATTCAGCTATCAGCCAAAGAGGAGAAGCTTGCTCTTCCTGTCTCCATGGACGACACCTT TTGCTTAGCTGGTGTGCTTTGAAGGCTAGCTGTGCTATGTGAAAGGAGGAGCTGATTTTTTAAATACTTT TTCTTGGGAAGTATTTGTGGCCTTTAATTTGTAACTATATACTTAGATGCCTATATTGGACATAGGCGAA CACAGCATAAAACTGATGCCTTATGGAGAGTTAAAGAGGTGAGAAAACTACTGGTTCTTGGATTTCTAGT CTGGATTGTAAAGAGAACTTACTTTTTCCACTTGTCTGTAAGTCTTTGTCCACAAGTTAAAAACATACAC AGTCCTAAGGGCTGATCATAACTGAAACACTTCAAAAATTATTGGCAGAGAAGGTATAACGGGGGATGGAA AAGTTAGCTTTAAAAGAGAATGCTCAGTCAGTGGCATTAGGAAAATAATGACTGAAGCAATTAGTTGAAA ACTGTAGAACAACTAGTGTTCCAGGGTAGCTACAGTGATGTGGGAAATTGTGGCAAAGCAGTTCTTCTCA AGTCAATTTGTTTAAAAGACTTTGGGGTGTAAAGATGAGTCCTGACAGTCTCTGAATGACCTTAGTGACT GTTGTACTATGTGAAAGGATCCATTGGCATGGAGATGAGAAGTAGGAGGGCCCAAATAAACCATCAAGACA ACTGAAAAAAGATCATACCTCAGGGTGGCACTTGAACCCTCAAAGTGCTCACCAACTTTCAGTTTCTAGT ATCAGGCAAAGCCTAAGGGAAGGGACTGCTTTCCTGGCAGGGTGGACCCCAAATCAGCCTGCTTCTGATA ATAGAGGGTGCAAGGAAGTTTAGTGAGCATTTCTGAGGAAAGCCTGAGCACACAGAGTAGATTAACTATG

CTTTTCAATAAATTGGCCAGACTATTTTGACCTAAGATTATAAAGAGTTTTCCTGACAACCTAGCAGTCA CTTAACAGATGTCGATTGCACATTAGTTTTGTCAAGACACCTTTATAACAAAGGGAAATGCACACACTTC ATCCAAAAGGACATTGTGGTTACAGTTAGGAAGAAAACACTTAAGATGGAATTATCCATGTAAGTGTAAG CTCCTTAGGTGCCAATCGTCTAGCAAGCATGCATACATAGGGGGACAAGTTAAGAGTCTTACCGGGTTGAG TAAGAAAAGGAAATTATTGCCATGCGAGACAGAGCACGATGCAGCAATGTGGAGGATGAGCAGACAGCTA GCATGTTGTAAGGAGCTCAGAACGGGAGAGAGCCTTCCTGCAGTGGCATCGGGGGAGAATGCAAAGGAAAGT CTTGAACAGTCCAGTGAGCCTTTGCCTCTGGATAAACTGTTGATACAGGGAGACATTTGCTTTAAACAGT CTTCACATAACCAAGCCATTCAGTACTTCTTGAAACTGACTTCATAACAGGAGTCATTGTAAGTTCCACA GAAAGCAAGACGTATGTATTTCAGTTCTTGTCTTGACCAGCAGCACTCCGGAGGCCCAGTGTCCGGTGCC CTCCTTGTATCTGAAGCAGGGGTAACAGCTCTGCTGTGGGGCCTGTTTCCCTCTAGTATTTACCTCAAGGC TTGGAAATGTATTTTGAAAGACCTTCAGTCAAACGAAGTAAAGCAAATGTCAAGAAGGATAAACCACTGT TGGTAACACTTGGGTCTCCTTGGGAAAGAACAACACCTTGACCAAAGCATTTAAGTTTTAGGCAAATTCC ATAATATTTCACTCTTAGTTATAAAATTATCATACATGAGATGTTGAGGATCTATATAGATTATTCAGAT TTTATATTCCTTATAGATTGACTCAAATATTCCTTAAAAGATTATATGATGCTCCTATGGCATAAATT TCATTGTGAATTATATGTAATTCTAATAGATATTGTTTGCTTTAGTCATTTTTGTCTCCTTTTCCTATAG TTTCCTGTGTGAGTGATTCCATGTAATTAATTGGACAGTCTATCCACAGGCAACAAATAGAAGTAGTATT TGTAATTGCAGCCTGTGCCAGGGACTGTGTTAGACTGATTAGTAACACTATGAATCACCCGAGATCTTAA GTATTGCTATAAAGAGAAGACTGAAGATGAGAGAGAAGAGTAAAGTATTTTCCTGGGATTATATAGTTGGTAAAA AAGAATCATGATTTAAACTCTGGACTTTGGATAAAAGTATCAGTAATTTTCCTCATTGCTAGCAGTCCTC ATGCAAGGTCTCTGGACTAAAGCGATGTATTACCTGCAAATGCTTGAGTTTCATCCCATACTTATGGCGT GAGGTGAGTGTGGCAGCCAGCATCTCTGTCCTCCTAGGTAACTGGTTAGTGCTGAACCTCGAGATTCACC GTGGGACTAGAATTCAGTCAACAATAAAAGCTTTCATCAGGTGGCTAAAATGTGCAGACTCTGTTTGTAC TGGCATGTTGGCCATCACTCACAGATGCAACTCTAGCCAGAATCAAGAATGGGGCAGATCCAGAGCCCAG CTCGCTGAGCTTCTGCCCCAGATTTCAGAGGCAGAGTAAGAAGTGGAACAGTGTTTTCCTCCCAGGTGCT CAGGACAGGCTGGTCAACTTCCAGTCACATATGCCATTTAGTAAGTGCTTCGGCCTGTGCAGCCATTAGT GGGTCAGAAAGGTGAACTAACTCCAACTTAGATGCCCCTCCCCTTTATTTTGGTCTCAAATCTGTTTTAA CGCTTGCTAGGCAAGCGCTCTACCACTGAGCTAAATCCCCCAACCCCCAAAACTGTATTTTAAAAATCAGT TGTAGACATCCAGATGGGGAGAGTGCATTGGACAATCTGAGAAATCTATTCAGGTGCTGCCTAATTCCAT TAGCTTTAAGTTAGATACAAGCTGTTTGTAGTATTTTGGGGTTTTATTGTGCAAATAAACAATAGAGGCCT TTAGTCCCAGCGTTAGGATGCAGAGATCCATTTCT

Vector Summary

Vector ID	VB220328-1304ynx
Vector Name	pLV[Exp]-SYN1>{rtOMP25C-ter Lenti WT}:IRES:EmGFP
Vector Size	8590 bp
Viral Genome Size	5115 bp
Vector Type	Mammalian Gene Expression Lentiviral Vector
Inserted Promoter	SYN1
Inserted ORF	{hATAT1(1)rtOMP25C-ter Lenti WT}, EmGFP
Inserted Linker	IRES
Plasmid Copy Number	High
Antibiotic Resistance	Ampicillin
Cloning Host	VB UltraStable (or alternative strain)

Vector Map

Vector Components

Name	Position	Size (bp)	Туре	Description	Application notes
RSV promoter	■ 1-229	229	Promoter	Rous sarcoma virus enhancer/promoter	Strong promoter; drives transcription of viral RNA in packaging cells.
5' LTR-ΔU3	230-410	181	LTR	Truncated HIV-1 5' long terminal repeat	Allows transcription of viral RNA and its packaging into virus.
Ψ	■ 521-565	45	Miscellaneo us	HIV-1 packaging signal	Allows packaging of viral RNA into virus.
RRE	1 075-1308	234	Miscellaneo us	HIV-1 Rev response element	Rev protein binding site that allows Rev- dependent nuclear export of viral RNA during viral packaging.
сРРТ	■ 1803-1920	118	Miscellaneo us	Central polypurine tract	Facilitates the nuclear import of HIV-1 cDNA through a central DNA flap.
SYN1	1 950-2418	469	Promoter	Human synapsin I promoter	Tissue specificity: Brain. Cell type specificity: Mature neurons.
Kozak	■ 2443-2448	6	Miscellaneo us	Kozak translation initiation sequence	Facilitates translation initiation of ATG start codon downstream of the Kozak sequence.
rtOMP25C-ter Lenti W	2449-3069	621	CDS	None	None
IRES	3 094-3681	588	Linker	Encephalomyocarditis virus internal ribosome entry site	Recruits ribosome to initiate translation internally on a transcript independent of its 5' end. Multiple proteins can be made from a polycistronic transcript containing multiple ORFs separated by IRES.

Name	Position	Size (bp)	Туре	Description	Application notes
EmGFP	■ 3682-4401	720	CDS	Emerald green fluorescent protein; variant of EGFP generated by mutagenesis	Enhanced photostability and brightness compared to its predecessor EGFP.
WPRE	■ 4431-5028	598	Miscellaneo us	Woodchuck hepatitis virus posttranscriptional regulatory element	Enhances virus stability in packaging cells, leading to higher titer of packaged virus; enhances higher expression of transgenes.
3' LTR-ΔU3	5 110-5344	235	LTR	Truncated HIV-1 3' long terminal repeat	Allows packaging of viral RNA into virus; self- inactivates the 5' LTR by a copying mechanism during viral genome integration; contains polyadenylation signal for transcription termination.
SV40 early pA	■ 5417-5551	135	PolyA_signal	Simian virus 40 early polyadenylation signal	Allows transcription termination and polyadenylation of mRNA transcribed by Pol II RNA polymerase.
AmpiciIIin	6505-7365	861	CDS	AmpiciIIin resistance gene	Allows E. coli to be resistant to ampiciIIin.
pUC ori	■ 7536-8124	589	Rep_origin	pUC origin of replication	Facilitates plasmid replication in E. coli; regulates high-copy plasmid number (500- 700).

Note: Components added by user are listed in **bold red** text.

Vector Sequence

1	AATGTAGTCT	TATGCAATAC	TCTTGTAGTC	TTGCAACATG	GTAACGATGA	GTTAGCAACA	TGCCTTACAA	GGAGAGAAAA
81	AGCACCGTGC	ATGCCGATTG	GTGGAAGTAA	GGTGGTACGA	TCGTGCCTTA	TTAGGAAGGC	AACAGACGGG	TCTGACATGG
161	ATTGGACGAA	CCACTGAATT	GCCGCATTGC	AGAGATATTG	TATTTAAGTG	CCTAGCTCGA	TACATAAACG	GGTCTCTCTG
241	GTTAGACCAG	ATCTGAGCCT	GGGAGCTCTC	TGGCTAACTA	GGGAACCCAC	TGCTTAAGCC	TCAATAAAGC	TTGCCTTGAG
321	TGCTTCAAGT	AGTGTGTGCC	CGTCTGTTGT	GTGACTCTGG	TAACTAGAGA	TCCCTCAGAC	CCTTTTAGTC	AGTGTGGAAA
401	ATCTCTAGCA	GTGGCGCCCG	AACAGGGACT	TGAAAGCGAA	AGGGAAACCA	GAGGAGCTCT	CTCGACGCAG	GACTCGGCTT

481	GCTGAAGCGC	GCACGGCAAG	AGGCGAGGGG	CGGCGACTGG	TGAGTACGCC	AAAAATTTTG	ACTAGCGGAG	GCTAGAAGGA
561	GAGAGATGGG	TGCGAGAGCG	TCAGTATTAA	GCGGGGGAGA	ATTAGATCGC	GATGGGAAAA	AATTCGGTTA	AGGCCAGGGG
641	GAAAGAAAAA	ΑΤΑΤΑΑΑΤΤΑ	AAACATATAG	TATGGGCAAG	CAGGGAGCTA	GAACGATTCG	CAGTTAATCC	TGGCCTGTTA
721	GAAACATCAG	AAGGCTGTAG	ACAAATACTG	GGACAGCTAC	AACCATCCCT	TCAGACAGGA	TCAGAAGAAC	TTAGATCATT
801	ATATAATACA	GTAGCAACCC	TCTATTGTGT	GCATCAAAGG	ATAGAGATAA	AAGACACCAA	GGAAGCTTTA	GACAAGATAG
881	AGGAAGAGCA	AAACAAAAGT	AAGACCACCG	CACAGCAAGC	GGCCGCTGAT	CTTCAGACCT	GGAGGAGGAG	ATATGAGGGA
961	CAATTGGAGA	AGTGAATTAT	ΑΤΑΑΑΤΑΤΑΑ	AGTAGTAAAA	ATTGAACCAT	TAGGAGTAGC	ACCCACCAAG	GCAAAGAGAA
1041	GAGTGGTGCA	GAGAGAAAAA	AGAGCAGTGG	GAATAGGAGC	TTTGTTCCTT	GGGTTCTTGG	GAGCAGCAGG	AAGCACTATG
1121	GGCGCAGCGT	CAATGACGCT	GACGGTACAG	GCCAGACAAT	TATTGTCTGG	TATAGTGCAG	CAGCAGAACA	ATTTGCTGAG
1201	GGCTATTGAG	GCGCAACAGC	ATCTGTTGCA	ACTCACAGTC	TGGGGCATCA	AGCAGCTCCA	GGCAAGAATC	CTGGCTGTGG
1281	AAAGATACCT	AAAGGATCAA	CAGCTCCTGG	GGATTTGGGG	TTGCTCTGGA	AAACTCATTT	GCACCACTGC	TGTGCCTTGG
1361	AATGCTAGTT	GGAGTAATAA	ATCTCTGGAA	CAGATTTGGA	ATCACACGAC	CTGGATGGAG	TGGGACAGAG	AAATTAACAA
1441	TTACACAAGC	TTAATACACT	CCTTAATTGA	AGAATCGCAA	AACCAGCAAG	AAAAGAATGA	ACAAGAATTA	TTGGAATTAG
1521	ATAAATGGGC	AAGTTTGTGG	AATTGGTTTA	ACATAACAAA	TTGGCTGTGG	TATATAAAAT	TATTCATAAT	GATAGTAGGA
1601	GGCTTGGTAG	GTTTAAGAAT	AGTTTTTGCT	GTACTTTCTA	TAGTGAATAG	AGTTAGGCAG	GGATATTCAC	CATTATCGTT
1681	TCAGACCCAC	CTCCCAACCC	CGAGGGGACC	CGACAGGCCC	GAAGGAATAG	AAGAAGAAGG	TGGAGAGAGA	GACAGAGACA
1761	GATCCATTCG	ATTAGTGAAC	GGATCTCGAC	GGTATCGCTA	GCTTTTAAAA	GAAAAGGGGG	GATTGGGGGG	TACAGTGCAG
1841	GGGAAAGAAT	AGTAGACATA	ATAGCAACAG	ACATACAAAC	TAAAGAATTA	САААААСААА	ТТАСАААААТ	TCAAAATTTT
1921	ACTAGTATCA	ACTTTGTATA	GAAAAGTTGC	TGCAGAGGGC	CCTGCGTATG	AGTGCAAGTG	GGTTTTAGGA	CCAGGATGAG
2001	GCGGGGTGGG	GGTGCCTACC	TGACGACCGA	CCCCGACCCA	CTGGACAAGC	ACCCAACCCC	CATTCCCCAA	ATTGCGCATC
2081	CCCTATCAGA	GAGGGGGAGG	GGAAACAGGA	TGCGGCGAGG	CGCGTGCGCA	CTGCCAGCTT	CAGCACCGCG	GACAGTGCCT
2161	TCGCCCCCGC	CTGGCGGCGC	GCGCCACCGC	CGCCTCAGCA	CTGAAGGCGC	GCTGACGTCA	CTCGCCGGTC	CCCCGCAAAC
2241	TCCCCTTCCC	GGCCACCTTG	GTCGCGTCCG	CGCCGCCGCC	GGCCCAGCCG	GACCGCACCA	CGCGAGGCGC	GAGATAGGGG
2321	GGCACGGGCG	CGACCATCTG	CGCTGCGGCG	CCGGCGACTC	AGCGCTGCCT	CAGTCTGCGG	TGGGCAGCGG	AGGAGTCGTG
2401	TCGTGCCTGA	GAGCGCAGCA	AGTTTGTACA	AAAAAGCAGG	CTGCCACCAT	GTTCCTGAGG	GGGTATAAGA	GAGAGGGGCA
2481	GGTCAGGAAG	CATAGGAAGT	CAGTTGCACA	TGGGGGAGGG	TTGTGGGGAA	ACTGTAAAAG	CTATGCTGGG	GAGGCGGCAC
2561	GGAGCTTGAT	TCACCTTCAC	CTGCGCCGGG	CACCCGCTGA	CCCCGGGTTT	CCGCCCGGAG	AGCAGTCAGA	TATGAACGGA
2641	CGGGTGGATT	ATTTAGTCTC	CGAGGAAGAG	ATCAACCTGA	CCAGAGGACC	CTCGGGGCTG	GGCTTCAACA	TCGTCGGTGG
2721	GACAGATCAA	CAGTATGTCT	CCAATGACAG	TGGCATCTAC	GTCAGCCGCA	TCAAAGAGGA	TGGGGCTGCG	GCCCGGGATG
2801	GGCGGCTCCA	GGAGGGTGAT	AAGATCCTCT	CGGTAAATGG	CCAAGACCTG	AAGAACCTGT	TGCACCAAGA	TGCCGTAGAC
2881	CTCTTCCGTA	ATGCAGGATA	TGCCGTGTCC	CTGAGAGTGC	AGCACAGGTT	ACCAGTGCAG	AATGGACCTA	TAGTTCATCG
2961	AGGCGACGGA	GAGCCGAGTG	GAGTTCCTGT	AGCTGTGGTG	CTGCTGCCAG	TGTTTGCCCT	TACCCTGGTA	GCAGTTTGGG
3041	CCTTCGTGAG	ATACCGAAAG	CAGCTCTGAA	CCCAGCTTTC	TTGTACAAAG	TGGGCCCCTC	TCCCTCCCCC	CCCCCTAACG
3121	TTACTGGCCG	AAGCCGCTTG	GAATAAGGCC	GGTGTGCGTT	TGTCTATATG	TTATTTTCCA	CCATATTGCC	GTCTTTTGGC
3201	AATGTGAGGG	CCCGGAAACC	TGGCCCTGTC	TTCTTGACGA	GCATTCCTAG	GGGTCTTTCC	CCTCTCGCCA	AAGGAATGCA
3281	AGGTCTGTTG	AATGTCGTGA	AGGAAGCAGT	TCCTCTGGAA	GCTTCTTGAA	GACAAACAAC	GTCTGTAGCG	ACCCTTTGCA
3361	GGCAGCGGAA	CCCCCCACCT	GGCGACAGGT	GCCTCTGCGG	CCAAAAGCCA	CGTGTATAAG	ATACACCTGC	AAAGGCGGCA
3441	CAACCCCAGT	GCCACGTTGT	GAGTTGGATA	GTTGTGGAAA	GAGTCAAATG	GCTCTCCTCA	AGCGTATTCA	ACAAGGGGCT
3521	GAAGGATGCC	CAGAAGGTAC	CCCATTGTAT	GGGATCTGAT	CTGGGGCCTC	GGTGCACATG	CTTTACATGT	GTTTAGTCGA
3601	GGTTAAAAAA	ACGTCTAGGC	CCCCCGAACC	ACGGGGACGT	GGTTTTCCTT	TGAAAAACAC	GATGATAATA	TGGCCACAAC
3681	CATGGTGAGC	AAGGGCGAGG	AGCTGTTCAC	CGGGGTGGTG	CCCATCCTGG	TCGAGCTGGA	CGGCGACGTA	AACGGCCACA
3761	AGTTCAGCGT	GTCCGGCGAG	GGCGAGGGCG	ATGCCACCTA	CGGCAAGCTG	ACCCTGAAGT	TCATCTGCAC	CACCGGCAAG
3841	CTGCCCGTGC	CCTGGCCCAC	CCTCGTGACC	ACCTTCACCT	ACGGCGTGCA	GTGCTTCGCC	CGCTACCCCG	ACCACATGAA
3921	GCAGCACGAC	TTCTTCAAGT	CCGCCATGCC	CGAAGGCTAC	GTCCAGGAGC	GCACCATCTT	CTTCAAGGAC	GACGGCAACT
4001	ACAAGACCCG	CGCCGAGGTG	AAGTTCGAGG	GCGACACCCT	GGTGAACCGC	ATCGAGCTGA	AGGGCATCGA	CTTCAAGGAG
4081	GACGGCAACA	TCCTGGGGCA	CAAGCTGGAG	TACAACTACA	ACAGCCACAA	GGTCTATATC	ACCGCCGACA	AGCAGAAGAA
4161	CGGCATCAAG	GTGAACTTCA	AGACCCGCCA	CAACATCGAG	GACGGCAGCG	TGCAGCTCGC	CGACCACTAC	CAGCAGAACA
4241	CCCCCATCGG	CGACGGCCCC	GTGCTGCTGC	CCGACAACCA	CTACCTGAGC	ACCCAGTCCG	CCCTGAGCAA	AGACCCCAAC

4321	GAGAAGCGCG	ATCACATGGT	CCTGCTGGAG	TTCGTGACCG	CCGCCGGGAT	CACTCTCGGC	ATGGACGAGC	TGTACAAGTA
4401	ACAACTTTAT	TATACATAGT	TGATCAATTC	CGATAATCAA	CCTCTGGATT	ACAAAATTTG	TGAAAGATTG	ACTGGTATTC
4481	TTAACTATGT	TGCTCCTTTT	ACGCTATGTG	GATACGCTGC	TTTAATGCCT	TTGTATCATG	CTATTGCTTC	CCGTATGGCT
4561	TTCATTTTCT	CCTCCTTGTA	TAAATCCTGG	TTGCTGTCTC	TTTATGAGGA	GTTGTGGCCC	GTTGTCAGGC	AACGTGGCGT
4641	GGTGTGCACT	GTGTTTGCTG	ACGCAACCCC	CACTGGTTGG	GGCATTGCCA	CCACCTGTCA	GCTCCTTTCC	GGGACTTTCG
4721	CTTTCCCCCT	CCCTATTGCC	ACGGCGGAAC	TCATCGCCGC	CTGCCTTGCC	CGCTGCTGGA	CAGGGGCTCG	GCTGTTGGGC
4801	ACTGACAATT	CCGTGGTGTT	GTCGGGGAAG	CTGACGTCCT	TTCCATGGCT	GCTCGCCTGT	GTTGCCACCT	GGATTCTGCG
4881	CGGGACGTCC	TTCTGCTACG	TCCCTTCGGC	CCTCAATCCA	GCGGACCTTC	CTTCCCGCGG	CCTGCTGCCG	GCTCTGCGGC
4961	CTCTTCCGCG	TCTTCGCCTT	CGCCCTCAGA	CGAGTCGGAT	CTCCCTTTGG	GCCGCCTCCC	CGCATCGGGA	ATTCCCGCGG
5041	TTCGCTTTAA	GACCAATGAC	TTACAAGGCA	GCTGTAGATC	TTAGCCACTT	TTTAAAAGAA	AAGGGGGGAC	TGGAAGGGCT
5121	AATTCACTCC	CAACGAAGAC	AAGATCTGCT	TTTTGCTTGT	ACTGGGTCTC	TCTGGTTAGA	CCAGATCTGA	GCCTGGGAGC
5201	TCTCTGGCTA	ACTAGGGAAC	CCACTGCTTA	AGCCTCAATA	AAGCTTGCCT	TGAGTGCTTC	AAGTAGTGTG	TGCCCGTCTG
5281	TTGTGTGACT	CTGGTAACTA	GAGATCCCTC	AGACCCTTTT	AGTCAGTGTG	GAAAATCTCT	AGCAGTAGTA	GTTCATGTCA
5361	TCTTATTATT	CAGTATTTAT	AACTTGCAAA	GAAATGAATA	TCAGAGAGTG	AGAGGAACTT	GTTTATTGCA	GCTTATAATG
5441	GTTACAAATA	AAGCAATAGC	ATCACAAATT	ТСАСАААТАА	AGCATTTTTT	TCACTGCATT	CTAGTTGTGG	TTTGTCCAAA
5521	CTCATCAATG	TATCTTATCA	TGTCTGGCTC	TAGCTATCCC	GCCCCTAACT	CCGCCCATCC	CGCCCCTAAC	TCCGCCCAGT
5601	TCCGCCCATT	CTCCGCCCCA	TGGCTGACTA	ΑΤΤΤΤΤΤΤΤΑ	TTTATGCAGA	GGCCGAGGCC	GCCTCGGCCT	CTGAGCTATT
5681	CCAGAAGTAG	TGAGGAGGCT	TTTTTGGAGG	CCTAGGGACG	TACCCAATTC	GCCCTATAGT	GAGTCGTATT	ACGCGCGCTC
5761	ACTGGCCGTC	GTTTTACAAC	GTCGTGACTG	GGAAAACCCT	GGCGTTACCC	AACTTAATCG	CCTTGCAGCA	CATCCCCCTT
5841	TCGCCAGCTG	GCGTAATAGC	GAAGAGGCCC	GCACCGATCG	CCCTTCCCAA	CAGTTGCGCA	GCCTGAATGG	CGAATGGGAC
5921	GCGCCCTGTA	GCGGCGCATT	AAGCGCGGCG	GGTGTGGTGG	TTACGCGCAG	CGTGACCGCT	ACACTTGCCA	GCGCCCTAGC
6001	GCCCGCTCCT	TTCGCTTTCT	TCCCTTCCTT	TCTCGCCACG	TTCGCCGGCT	TTCCCCGTCA	AGCTCTAAAT	CGGGGGGCTCC
6081	CTTTAGGGTT	CCGATTTAGT	GCTTTACGGC	ACCTCGACCC	CAAAAACTT	GATTAGGGTG	ATGGTTCACG	TAGTGGGCCA
6161	TCGCCCTGAT	AGACGGTTTT	TCGCCCTTTG	ACGTTGGAGT	CCACGTTCTT	TAATAGTGGA	CTCTTGTTCC	AAACTGGAAC
6241	AACACTCAAC	CCTATCTCGG	TCTATTCTTT	TGATTTATAA	GGGATTTTGC	CGATTTCGGC	CTATTGGTTA	AAAAATGAGC
6321	TGATTTAACA	AAAATTTAAC	GCGAATTTTA	ACAAAATATT	AACGCTTACA	ATTTAGGTGG	CACTTTTCGG	GGAAATGTGC
6401	GCGGAACCCC	TATTTGTTTA	TTTTTTCTAAA	TACATTCAAA	TATGTATCCG	CTCATGAGAC	AATAACCCTG	ATAAATGCTT
6481	CAATAATATT	GAAAAAGGAA	GAGTATGAGT	ATTCAACATT	TCCGTGTCGC	CCTTATTCCC	TTTTTTGCGG	CATTTTGCCT
6561	TCCTGTTTTT	GCTCACCCAG	AAACGCTGGT	GAAAGTAAAA	GATGCTGAAG	ATCAGTTGGG	TGCACGAGTG	GGTTACATCG
6641	AACTGGATCT	CAACAGCGGT	AAGATCCTTG	AGAGTTTTCG	CCCCGAAGAA	CGTTTTCCAA	TGATGAGCAC	TTTTAAAGTT
6721	CTGCTATGTG	GCGCGGTATT	ATCCCGTATT	GACGCCGGGC	AAGAGCAACT	CGGTCGCCGC	ATACACTATT	CTCAGAATGA
6801	CTTGGTTGAG	TACTCACCAG	TCACAGAAAA	GCATCTTACG	GATGGCATGA	CAGTAAGAGA	ATTATGCAGT	GCTGCCATAA
6881	CCATGAGTGA	TAACACTGCG	GCCAACTTAC	TTCTGACAAC	GATCGGAGGA	CCGAAGGAGC	TAACCGCTTT	TTTGCACAAC
6961	ATGGGGGATC	ATGTAACTCG	CCTTGATCGT	TGGGAACCGG	AGCTGAATGA	AGCCATACCA	AACGACGAGC	GTGACACCAC
7041	GATGCCTGTA	GCAATGGCAA	CAACGTTGCG	CAAACTATTA	ACTGGCGAAC	TACTTACTCT	AGCTTCCCGG	CAACAATTAA
7121	TAGACTGGAT	GGAGGCGGAT	AAAGTTGCAG	GACCACTTCT	GCGCTCGGCC	CTTCCGGCTG	GCTGGTTTAT	TGCTGATAAA
7201	TCTGGAGCCG	GTGAGCGTGG	GTCTCGCGGT	ATCATTGCAG	CACTGGGGCC	AGATGGTAAG	CCCTCCCGTA	TCGTAGTTAT
7281	CTACACGACG	GGGAGTCAGG	CAACTATGGA	TGAACGAAAT	AGACAGATCG	CTGAGATAGG	TGCCTCACTG	ATTAAGCATT
7361	GGTAACTGTC	AGACCAAGTT	TACTCATATA	TACTTTAGAT	TGATTTAAAA	CTTCATTTTT	AATTTAAAAG	GATCTAGGTG
7441	AAGATCCTTT	TTGATAATCT	CATGACCAAA	ATCCCTTAAC	GTGAGTTTTC	GTTCCACTGA	GCGTCAGACC	CCGTAGAAAA
7521	GATCAAAGGA	TCTTCTTGAG	ATCCTTTTTT	TCTGCGCGTA	ATCTGCTGCT	TGCAAACAAA	AAAACCACCG	CTACCAGCGG
7601	TGGTTTGTTT	GCCGGATCAA	GAGCTACCAA	CTCTTTTTCC	GAAGGTAACT	GGCTTCAGCA	GAGCGCAGAT	ACCAAATACT
7681	GTTCTTCTAG	TGTAGCCGTA	GTTAGGCCAC	CACTTCAAGA	ACTCTGTAGC	ACCGCCTACA	TACCTCGCTC	TGCTAATCCT
7761	GTTACCAGTG	GCTGCTGCCA	GTGGCGATAA	GTCGTGTCTT	ACCGGGTTGG	ACTCAAGACG	ATAGTTACCG	GATAAGGCGC
7841	AGCGGTCGGG	CTGAACGGGG	GGTTCGTGCA	CACAGCCCAG	CTTGGAGCGA	ACGACCTACA	CCGAACTGAG	ATACCTACAG
7921	CGTGAGCTAT	GAGAAAGCGC	CACGCTTCCC	GAAGAGAGAA	AGGCGGACAG	GTATCCGGTA	AGCGGCAGGG	TCGGAACAGG
8001	AGAGCGCACG	AGGGAGCTTC	CAGGGGGAAA	CGCCTGGTAT	CTTTATAGTC	CTGTCGGGTT	TCGCCACCTC	TGACTTGAGC
	GTCGATTTTT	GTGATGCTCG	TCAGGGGGGC	GGAGCCTATG	GAAAAACGCC	AGCAACGCGG	CCTTTTTACG	GTTCCTGGCC

808T	TTTTGCTGGC	CTTTTGCTCA	CATGTTCTTT	CCTGCGTTAT	CCCCTGATTC	TGTGGATAAC	CGTATTACCG	CCTTTGAGTG
8161	AGCTGATACC	GCTCGCCGCA	GCCGAACGAC	CGAGCGCAGC	GAGTCAGTGA	GCGAGGAAGC	GGAAGAGCGC	CCAATACGCA
8241	AACCGCCTCT	CCCCGCGCGT	TGGCCGATTC	ATTAATGCAG	CTGGCACGAC	AGGTTTCCCG	ACTGGAAAGC	GGGCAGTGAG
8321	CGCAACGCAA	TTAATGTGAG	TTAGCTCACT	CATTAGGCAC	CCCAGGCTTT	ACACTTTATG	CTTCCGGCTC	GTATGTTGTG
8401	TGGAATTGTG	AGCGGATAAC	AATTTCACAC	AGGAAACAGC	TATGACCATG	ATTACGCCAA	GCGCGCAATT	AACCCTCACT
8481	AAAGGGAACA	AAAGCTGGAG	CTGCAAGCTT					
8561								

Validation by Restriction Enzyme Digestion

Restriction Enzymes	Cutting Sites	DNA Fragments (bp)
SmaI	2605, 2795	190, 8400
AvaI	1700, 2603, 2692, 2793	903, 89, 101, 7497
NheI	1798	8590
XmaI	2603, 2793	190, 8400
ApaLI	3573, 4645, 6621, 7867	1072, 1976, 1246, 4296
ApaLI+XmaI	2603, 2793, 3573, 4645, 6621, 7867	190, 780, 1072, 1976, 1246, 3326
ApaLI+SmaI	2605, 2795, 3573, 4645, 6621, 7867	190, 778, 1072, 1976, 1246, 3328
ApaLI+AvaI	1700, 2603, 2692, 2793, 3573, 4645, 6621, 7867	903, 89, 101, 780, 1072, 1976, 1246, 2423
ApaLI+NheI	1798, 3573, 4645, 6621, 7867	1775, 1072, 1976, 1246, 2521

Data S2. Map of the newly generated lentiviral plasmid expressing ATAT1 fused to the mitochondrially targeting OMP25 domain, Related to Figure S8

>NM 024909.5 Homo sapiens alpha tubulin acetyltransferase 1 (ATAT1), transcript variant 2, mRNA >NM 022599.2 Rattus norvegicus synaptojanin 2 binding protein (Synj2bp) , mRNA ATGGAGTTCCCGTTCGATGTGGACGCGCTGTTCCCCGGAGCGGATCACGGTGCTGGACCAGCACCTGAGGC CCCCAGCCCGCCGACCCGGAACCACAACGCCGGCCCGTGTTGATCTACAGCAGCAAATTATGACCATTAT AGATGAACTGGGCAAGGCTTCTGCCAAGGCCCAGAATCTTTCCGCTCCTATCACTAGTGCATCAAGGATG CAGAGTAACCGCCATGTTGTTTATATTCTCAAAGACAGTTCAGCCCGACCGGCTGGAAAAGGAGCCATTA TTGGTTTCATCAAAGTTGGATACAAGAAGCTCTTTGTACTGGATGATCGTGAGGCTCATAATGAGGTAGA ACCACTTTGCATCCTGGACTTTTACATCCATGAGTCTGTGCAACGCCATGGCCATGGGCGAGAACTCTTC TGAAATTCCTGAATAAGCACTACAATCTGGAGACCACAGTCCCACAGGTGAACAACTTTGTGATCTTTGA AGGCTTCTTTGCCCATCAACATCGGCCCCCTGCTCCCTCTGAGGGCAACTCGACACTCTGTGCTGCT GCAGTCGATCCCACGCCCGCTGCTCCAGCAAGGAAGCTGCCACCCAAGAGAGCAGAGGAGACATCAAGC CATACTCCTCTAGTGACCGAGAATTTCTGAAGGTAGCTGTGGAGCCTCCTTGGCCCCTAAACAGGGCCCC CCCCTCCGCCCCTTTGTGCCAGAGCAGGAGCTGCTGCGTTCCTTGCGCCTCTGCCCCCCACACCCTACCG **CTCTGAGGAGAGTCGATAC**CATCGAGGCGACGGAGAGCCGAGTGGAGTTCCTGTAGCTGTGGTGCTGCTG CCAGTGTTTGCCCTTACCCTGGTAGCAGTTTGGGCCTTCGTGAGATACCGAAAGCAGCTCTGA

Vector Summary

Vector ID	VB220329-1381pbx
Vector Name	pLV[Exp]-SYN1>{hATAT1(2)rtOMP25C-ter Lenti WT}:IRES:EmGFP
Vector Size	9082 bp
Viral Genome Size	5607 bp
Vector Type	Mammalian Gene Expression Lentiviral Vector
Inserted Promoter	SYN1
Inserted ORF	{hATAT1(2)rtOMP25C-ter Lenti WT}, EmGFP
Inserted Linker	IRES
Plasmid Copy Number	High
Antibiotic Resistance	Ampicillin
Cloning Host	VB UltraStable (or alternative strain)

Vector Map

Vector Components

Name	Position	Size (bp)	Туре	Description	Application notes
RSV promoter	■ 1-229	229	Promoter	Rous sarcoma virus enhancer/promoter	Strong promoter; drives transcription of viral RNA in packaging cells.
5' LTR-ΔU3	230-410	181	LTR	Truncated HIV-1 5' long terminal repeat	Allows transcription of viral RNA and its packaging into virus.
ψ	■ 521-565	45	Miscellaneo us	HIV-1 packaging signal	Allows packaging of viral RNA into virus.
RRE	■ 1075-1308	234	Miscellaneo us	HIV-1 Rev response element	Rev protein binding site that allows Rev- dependent nuclear export of viral RNA during viral packaging.
сРРТ	■ 1803-1920	118	Miscellaneo us	Central polypurine tract	Facilitates the nuclear import of HIV-1 cDNA through a central DNA flap.
SYN1	■ 1950-2418	469	Promoter	Human synapsin I promoter	Tissue specificity: Brain. Cell type specificity: Mature neurons.
Kozak	2443-2448	6	Miscellaneo us	Kozak translation initiation sequence	Facilitates translation initiation of ATG start codon downstream of the Kozak sequence.
{hATAT1(2)rtO MP25C-ter Lenti W	■ 2449-3561	1113	CDS	None	None
IRES	3 586-4173	588	Linker	Encephalomyocarditis virus internal ribosome entry site	Recruits ribosome to initiate translation internally on a transcript independent of its 5' end. Multiple proteins can be made from a polycistronic transcript containing multiple ORFs separated by IRES.

Name	Position	Size (bp)	Туре	Description	Application notes
EmGFP	4 174-4893	720	CDS	Emerald green fluorescent protein; variant of EGFP generated by mutagenesis	Enhanced photostability and brightness compared to its predecessor EGFP.
WPRE	■ 4923-5520	598	Miscellaneo us	Woodchuck hepatitis virus posttranscriptional regulatory element	Enhances virus stability in packaging cells, leading to higher titer of packaged virus; enhances higher expression of transgenes.
3' LTR-ΔU3	■ 5602-5836	235	LTR	Truncated HIV-1 3' long terminal repeat	Allows packaging of viral RNA into virus; self- inactivates the 5' LTR by a copying mechanism during viral genome integration; contains polyadenylation signal for transcription termination.
SV40 early pA	■ 5909-6043	135	PolyA_signal	Simian virus 40 early polyadenylation signal	Allows transcription termination and polyadenylation of mRNA transcribed by Pol II RNA polymerase.
AmpiciIIin	6997-7857	861	CDS	AmpiciIIin resistance gene	Allows E. coli to be resistant to ampiciIIin.
pUC ori	■ 8028-8616	589	Rep_origin	pUC origin of replication	Facilitates plasmid replication in E. coli; regulates high-copy plasmid number (500- 700).

Note: Components added by user are listed in **bold red** text.

Vector Sequence

1	AATGTAGTCT	TATGCAATAC	TCTTGTAGTC	TTGCAACATG	GTAACGATGA	GTTAGCAACA	TGCCTTACAA	GGAGAGAAAA
81	AGCACCGTGC	ATGCCGATTG	GTGGAAGTAA	GGTGGTACGA	TCGTGCCTTA	TTAGGAAGGC	AACAGACGGG	TCTGACATGG
161	ATTGGACGAA	CCACTGAATT	GCCGCATTGC	AGAGATATTG	TATTTAAGTG	CCTAGCTCGA	TACATAAACG	GGTCTCTCTG
241	GTTAGACCAG	ATCTGAGCCT	GGGAGCTCTC	TGGCTAACTA	GGGAACCCAC	TGCTTAAGCC	TCAATAAAGC	TTGCCTTGAG
321	TGCTTCAAGT	AGTGTGTGCC	CGTCTGTTGT	GTGACTCTGG	TAACTAGAGA	TCCCTCAGAC	CCTTTTAGTC	AGTGTGGAAA
401	ATCTCTAGCA	GTGGCGCCCG	AACAGGGACT	TGAAAGCGAA	AGGGAAACCA	GAGGAGCTCT	CTCGACGCAG	GACTCGGCTT

481	GCTGAAGCGC	GCACGGCAAG	AGGCGAGGGG	CGGCGACTGG	TGAGTACGCC	AAAAATTTTG	ACTAGCGGAG	GCTAGAAGGA
561	GAGAGATGGG	TGCGAGAGCG	TCAGTATTAA	GCGGGGGAGA	ATTAGATCGC	GATGGGAAAA	AATTCGGTTA	AGGCCAGGGG
641	GAAAGAAAAA	ΑΤΑΤΑΑΑΤΤΑ	AAACATATAG	TATGGGCAAG	CAGGGAGCTA	GAACGATTCG	CAGTTAATCC	TGGCCTGTTA
721	GAAACATCAG	AAGGCTGTAG	ACAAATACTG	GGACAGCTAC	AACCATCCCT	TCAGACAGGA	TCAGAAGAAC	TTAGATCATT
801	ATATAATACA	GTAGCAACCC	TCTATTGTGT	GCATCAAAGG	ATAGAGATAA	AAGACACCAA	GGAAGCTTTA	GACAAGATAG
881	AGGAAGAGCA	AAACAAAAGT	AAGACCACCG	CACAGCAAGC	GGCCGCTGAT	CTTCAGACCT	GGAGGAGGAG	ATATGAGGGA
961	CAATTGGAGA	AGTGAATTAT	ΑΤΑΑΑΤΑΤΑΑ	AGTAGTAAAA	ATTGAACCAT	TAGGAGTAGC	ACCCACCAAG	GCAAAGAGAA
1041	GAGTGGTGCA	GAGAGAAAAA	AGAGCAGTGG	GAATAGGAGC	TTTGTTCCTT	GGGTTCTTGG	GAGCAGCAGG	AAGCACTATG
1121	GGCGCAGCGT	CAATGACGCT	GACGGTACAG	GCCAGACAAT	TATTGTCTGG	TATAGTGCAG	CAGCAGAACA	ATTTGCTGAG
1201	GGCTATTGAG	GCGCAACAGC	ATCTGTTGCA	ACTCACAGTC	TGGGGCATCA	AGCAGCTCCA	GGCAAGAATC	CTGGCTGTGG
1281	AAAGATACCT	AAAGGATCAA	CAGCTCCTGG	GGATTTGGGG	TTGCTCTGGA	AAACTCATTT	GCACCACTGC	TGTGCCTTGG
1361	AATGCTAGTT	GGAGTAATAA	ATCTCTGGAA	CAGATTTGGA	ATCACACGAC	CTGGATGGAG	TGGGACAGAG	AAATTAACAA
1441	TTACACAAGC	TTAATACACT	CCTTAATTGA	AGAATCGCAA	AACCAGCAAG	AAAAGAATGA	ACAAGAATTA	TTGGAATTAG
1521	ATAAATGGGC	AAGTTTGTGG	AATTGGTTTA	ACATAACAAA	TTGGCTGTGG	TATATAAAAT	TATTCATAAT	GATAGTAGGA
1601	GGCTTGGTAG	GTTTAAGAAT	AGTTTTTGCT	GTACTTTCTA	TAGTGAATAG	AGTTAGGCAG	GGATATTCAC	CATTATCGTT
1681	TCAGACCCAC	CTCCCAACCC	CGAGGGGACC	CGACAGGCCC	GAAGGAATAG	AAGAAGAAGG	TGGAGAGAGA	GACAGAGACA
1761	GATCCATTCG	ATTAGTGAAC	GGATCTCGAC	GGTATCGCTA	GCTTTTAAAA	GAAAAGGGGG	GATTGGGGGG	TACAGTGCAG
1841	GGGAAAGAAT	AGTAGACATA	ATAGCAACAG	ACATACAAAC	TAAAGAATTA	САААААСААА	TTACAAAAAT	TCAAAATTTT
1921	ACTAGTATCA	ACTTTGTATA	GAAAAGTTGC	TGCAGAGGGC	CCTGCGTATG	AGTGCAAGTG	GGTTTTAGGA	CCAGGATGAG
2001	GCGGGGTGGG	GGTGCCTACC	TGACGACCGA	CCCCGACCCA	CTGGACAAGC	ACCCAACCCC	CATTCCCCAA	ATTGCGCATC
2081	CCCTATCAGA	GAGGGGGAGG	GGAAACAGGA	TGCGGCGAGG	CGCGTGCGCA	CTGCCAGCTT	CAGCACCGCG	GACAGTGCCT
2161	TCGCCCCCGC	CTGGCGGCGC	GCGCCACCGC	CGCCTCAGCA	CTGAAGGCGC	GCTGACGTCA	CTCGCCGGTC	CCCCGCAAAC
2241	TCCCCTTCCC	GGCCACCTTG	GTCGCGTCCG	CGCCGCCGCC	GGCCCAGCCG	GACCGCACCA	CGCGAGGCGC	GAGATAGGGG
2321	GGCACGGGCG	CGACCATCTG	CGCTGCGGCG	CCGGCGACTC	AGCGCTGCCT	CAGTCTGCGG	TGGGCAGCGG	AGGAGTCGTG
2401	TCGTGCCTGA	GAGCGCAGCA	AGTTTGTACA	AAAAAGCAGG	CTGCCACCAT	GGAGTTCCCG	TTCGATGTGG	ACGCGCTGTT
2481	CCCGGAGCGG	ATCACGGTGC	TGGACCAGCA	CCTGAGGCCC	CCAGCCCGCC	GACCCGGAAC	CACAACGCCG	GCCCGTGTTG
2561	ATCTACAGCA	GCAAATTATG	ACCATTATAG	ATGAACTGGG	CAAGGCTTCT	GCCAAGGCCC	AGAATCTTTC	CGCTCCTATC
2641	ACTAGTGCAT	CAAGGATGCA	GAGTAACCGC	CATGTTGTTT	ATATTCTCAA	AGACAGTTCA	GCCCGACCGG	CTGGAAAAGG
2721	AGCCATTATT	GGTTTCATCA	AAGTTGGATA	CAAGAAGCTC	TTTGTACTGG	ATGATCGTGA	GGCTCATAAT	GAGGTAGAAC
2801	CACTTTGCAT	CCTGGACTTT	TACATCCATG	AGTCTGTGCA	ACGCCATGGC	CATGGGCGAG	AACTCTTCCA	GTATATGTTG
2881	CAGAAGGAGC	GAGTGGAACC	GCACCAACTG	GCAATTGACC	GACCCTCACA	GAAGCTGCTG	AAATTCCTGA	ATAAGCACTA
2961	CAATCTGGAG	ACCACAGTCC	CACAGGTGAA	CAACTTTGTG	ATCTTTGAAG	GCTTCTTTGC	CCATCAACAT	CGGCCCCCTG
3041	CTCCCTCTCT	GAGGGCAACT	CGACACTCTC	GTGCTGCTGC	AGTCGATCCC	ACGCCCGCTG	CTCCAGCAAG	GAAGCTGCCA
3121	CCCAAGAGAG	CAGAGGGAGA	CATCAAGCCA	TACTCCTCTA	GTGACCGAGA	ATTTCTGAAG	GTAGCTGTGG	AGCCTCCTTG
3201	GCCCCTAAAC	AGGGCCCCTC	GCCGCGCCAC	ACCTCCAGCC	CACCCACCCC	CCCGCTCCAG	CAGCCTGGGA	AACTCACCAG
3281	AACGAGGTCC	CCTCCGCCCC	TTTGTGCCAG	AGCAGGAGCT	GCTGCGTTCC	TTGCGCCTCT	GCCCCCACA	CCCTACCGCC
3361	CGCCTTCTGT	TGGCTGCTGA	CCCTGGGGGC	AGCCCAGCTC	AACGTCGTCG	CACCAGCTCC	CTTCCCCGCT	CTGAGGAGAG
3441	TCGATACCAT	CGAGGCGACG	GAGAGCCGAG	TGGAGTTCCT	GTAGCTGTGG	TGCTGCTGCC	AGTGTTTGCC	CTTACCCTGG
3521	TAGCAGTTTG	GGCCTTCGTG	AGATACCGAA	AGCAGCTCTG	AACCCAGCTT	TCTTGTACAA	AGTGGGCCCC	TCTCCCTCCC
3601	CCCCCCCTAA	CGTTACTGGC	CGAAGCCGCT	TGGAATAAGG	CCGGTGTGCG	TTTGTCTATA	TGTTATTTTC	CACCATATTG
3681	CCGTCTTTTG	GCAATGTGAG	GGCCCGGAAA	CCTGGCCCTG	TCTTCTTGAC	GAGCATTCCT	AGGGGTCTTT	CCCCTCTCGC
3761	CAAAGGAATG	CAAGGTCTGT	TGAATGTCGT	GAAGGAAGCA	GTTCCTCTGG	AAGCTTCTTG	AAGACAAACA	ACGTCTGTAG
3841	CGACCCTTTG	CAGGCAGCGG	AACCCCCCAC	CTGGCGACAG	GTGCCTCTGC	GGCCAAAAGC	CACGTGTATA	AGATACACCT
3921	GCAAAGGCGG	CACAACCCCA	GTGCCACGTT	GTGAGTTGGA	TAGTTGTGGA	AAGAGTCAAA	TGGCTCTCCT	CAAGCGTATT
4001	CAACAAGGGG	CTGAAGGATG	CCCAGAAGGT	ACCCCATTGT	ATGGGATCTG	ATCTGGGGCC	TCGGTGCACA	TGCTTTACAT
4081	GTGTTTAGTC	GAGGTTAAAA	AAACGTCTAG	GCCCCCCGAA	CCACGGGGAC	GTGGTTTTCC	TTTGAAAAAC	ACGATGATAA
4161	TATGGCCACA	ACCATGGTGA	GCAAGGGCGA	GGAGCTGTTC	ACCGGGGTGG	TGCCCATCCT	GGTCGAGCTG	GACGGCGACG
1211	TAAACGGCCA	CAAGTTCAGC	GTGTCCGGCG	AGGGCGAGGG	CGATGCCACC	TACGGCAAGC	TGACCCTGAA	GTTCATCTGC

4321	ACCACCGGCA	AGCTGCCCGT	GCCCTGGCCC	ACCCTCGTGA	CCACCTTCAC	CTACGGCGTG	CAGTGCTTCG	CCCGCTACCC
4401	CGACCACATG	AAGCAGCACG	ACTTCTTCAA	GTCCGCCATG	CCCGAAGGCT	ACGTCCAGGA	GCGCACCATC	TTCTTCAAGG
4481	ACGACGGCAA	CTACAAGACC	CGCGCCGAGG	TGAAGTTCGA	GGGCGACACC	CTGGTGAACC	GCATCGAGCT	GAAGGGCATC
4561	GACTTCAAGG	AGGACGGCAA	CATCCTGGGG	CACAAGCTGG	AGTACAACTA	CAACAGCCAC	AAGGTCTATA	TCACCGCCGA
4641	CAAGCAGAAG	AACGGCATCA	AGGTGAACTT	CAAGACCCGC	CACAACATCG	AGGACGGCAG	CGTGCAGCTC	GCCGACCACT
4721	ACCAGCAGAA	CACCCCCATC	GGCGACGGCC	CCGTGCTGCT	GCCCGACAAC	CACTACCTGA	GCACCCAGTC	CGCCCTGAGC
4801	AAAGACCCCA	ACGAGAAGCG	CGATCACATG	GTCCTGCTGG	AGTTCGTGAC	CGCCGCCGGG	ATCACTCTCG	GCATGGACGA
4881	GCTGTACAAG	TAACAACTTT	ATTATACATA	GTTGATCAAT	TCCGATAATC	AACCTCTGGA	TTACAAAATT	TGTGAAAGAT
4961	TGACTGGTAT	TCTTAACTAT	GTTGCTCCTT	TTACGCTATG	TGGATACGCT	GCTTTAATGC	CTTTGTATCA	TGCTATTGCT
5041	TCCCGTATGG	CTTTCATTTT	CTCCTCCTTG	TATAAATCCT	GGTTGCTGTC	TCTTTATGAG	GAGTTGTGGC	CCGTTGTCAG
5121	GCAACGTGGC	GTGGTGTGCA	CTGTGTTTGC	TGACGCAACC	CCCACTGGTT	GGGGCATTGC	CACCACCTGT	CAGCTCCTTT
5201	CCGGGACTTT	CGCTTTCCCC	CTCCCTATTG	CCACGGCGGA	ACTCATCGCC	GCCTGCCTTG	CCCGCTGCTG	GACAGGGGCT
5281	CGGCTGTTGG	GCACTGACAA	TTCCGTGGTG	TTGTCGGGGA	AGCTGACGTC	CTTTCCATGG	CTGCTCGCCT	GTGTTGCCAC
5361	CTGGATTCTG	CGCGGGACGT	CCTTCTGCTA	CGTCCCTTCG	GCCCTCAATC	CAGCGGACCT	TCCTTCCCGC	GGCCTGCTGC
5441	CGGCTCTGCG	GCCTCTTCCG	CGTCTTCGCC	TTCGCCCTCA	GACGAGTCGG	ATCTCCCTTT	GGGCCGCCTC	CCCGCATCGG
5521	GAATTCCCGC	GGTTCGCTTT	AAGACCAATG	ACTTACAAGG	CAGCTGTAGA	TCTTAGCCAC	TTTTTAAAAG	AAAAGGGGGG
5601	ACTGGAAGGG	CTAATTCACT	CCCAACGAAG	ACAAGATCTG	CTTTTTGCTT	GTACTGGGTC	TCTCTGGTTA	GACCAGATCT
5681	GAGCCTGGGA	GCTCTCTGGC	TAACTAGGGA	ACCCACTGCT	TAAGCCTCAA	TAAAGCTTGC	CTTGAGTGCT	TCAAGTAGTG
5761	TGTGCCCGTC	TGTTGTGTGA	CTCTGGTAAC	TAGAGATCCC	TCAGACCCTT	TTAGTCAGTG	TGGAAAATCT	CTAGCAGTAG
5841	TAGTTCATGT	CATCTTATTA	TTCAGTATTT	ATAACTTGCA	AAGAAATGAA	TATCAGAGAG	TGAGAGGAAC	TTGTTTATTG
5921	CAGCTTATAA	TGGTTACAAA	TAAAGCAATA	GCATCACAAA	TTTCACAAAT	AAAGCATTTT	TTTCACTGCA	TTCTAGTTGT
6001	GGTTTGTCCA	AACTCATCAA	TGTATCTTAT	CATGTCTGGC	TCTAGCTATC	CCGCCCCTAA	CTCCGCCCAT	CCCGCCCTA
6081	ACTCCGCCCA	GTTCCGCCCA	TTCTCCGCCC	CATGGCTGAC	TAATTTTTTT	TATTTATGCA	GAGGCCGAGG	CCGCCTCGGC
6161	CTCTGAGCTA	TTCCAGAAGT	AGTGAGGAGG	CTTTTTTGGA	GGCCTAGGGA	CGTACCCAAT	TCGCCCTATA	GTGAGTCGTA
6241	TTACGCGCGC	TCACTGGCCG	TCGTTTTACA	ACGTCGTGAC	TGGGAAAACC	CTGGCGTTAC	CCAACTTAAT	CGCCTTGCAG
6321	CACATCCCCC	TTTCGCCAGC	TGGCGTAATA	GCGAAGAGGC	CCGCACCGAT	CGCCCTTCCC	AACAGTTGCG	CAGCCTGAAT
6401	GGCGAATGGG	ACGCGCCCTG	TAGCGGCGCA	TTAAGCGCGG	CGGGTGTGGT	GGTTACGCGC	AGCGTGACCG	CTACACTTGC
6481	CAGCGCCCTA	GCGCCCGCTC	CTTTCGCTTT	CTTCCCTTCC	TTTCTCGCCA	CGTTCGCCGG	CTTTCCCCGT	CAAGCTCTAA
6561	ATCGGGGGCT	CCCTTTAGGG	TTCCGATTTA	GTGCTTTACG	GCACCTCGAC	СССААААААС	TTGATTAGGG	TGATGGTTCA
6641	CGTAGTGGGC	CATCGCCCTG	ATAGACGGTT	TTTCGCCCTT	TGACGTTGGA	GTCCACGTTC	TTTAATAGTG	GACTCTTGTT
6721	CCAAACTGGA	ACAACACTCA	ACCCTATCTC	GGTCTATTCT	TTTGATTTAT	AAGGGATTTT	GCCGATTTCG	GCCTATTGGT
6801	TAAAAAATGA	GCTGATTTAA	САААААТТТА	ACGCGAATTT	ТААСААААТА	TTAACGCTTA	CAATTTAGGT	GGCACTTTTC
6881	GGGGAAATGT	GCGCGGAACC	CCTATTTGTT	TATTTTTCTA	AATACATTCA	AATATGTATC	CGCTCATGAG	ACAATAACCC
6961	TGATAAATGC	ТТСААТААТА	TTGAAAAAGG	AAGAGTATGA	GTATTCAACA	TTTCCGTGTC	GCCCTTATTC	CCTTTTTTGC
7041	GGCATTTTGC	CTTCCTGTTT	TTGCTCACCC	AGAAACGCTG	GTGAAAGTAA	AAGATGCTGA	AGATCAGTTG	GGTGCACGAG
7121	TGGGTTACAT	CGAACTGGAT	CTCAACAGCG	GTAAGATCCT	TGAGAGTTTT	CGCCCCGAAG	AACGTTTTCC	AATGATGAGC
7201	ACTTTTAAAG	TTCTGCTATG	TGGCGCGGTA	TTATCCCGTA	TTGACGCCGG	GCAAGAGCAA	CTCGGTCGCC	GCATACACTA
7281	TTCTCAGAAT	GACTTGGTTG	AGTACTCACC	AGTCACAGAA	AAGCATCTTA	CGGATGGCAT	GACAGTAAGA	GAATTATGCA
7361	GTGCTGCCAT	AACCATGAGT	GATAACACTG	CGGCCAACTT	ACTTCTGACA	ACGATCGGAG	GACCGAAGGA	GCTAACCGCT
7441	TTTTTGCACA	ACATGGGGGA	TCATGTAACT	CGCCTTGATC	GTTGGGAACC	GGAGCTGAAT	GAAGCCATAC	CAAACGACGA
7521	GCGTGACACC	ACGATGCCTG	TAGCAATGGC	AACAACGTTG	CGCAAACTAT	TAACTGGCGA	ACTACTTACT	CTAGCTTCCC
7601	GGCAACAATT	AATAGACTGG	ATGGAGGCGG	ATAAAGTTGC	AGGACCACTT	CTGCGCTCGG	CCCTTCCGGC	TGGCTGGTTT
7681	ATTGCTGATA	AATCTGGAGC	CGGTGAGCGT	GGGTCTCGCG	GTATCATTGC	AGCACTGGGG	CCAGATGGTA	AGCCCTCCCG
7761	TATCGTAGTT	ATCTACACGA	CGGGGAGTCA	GGCAACTATG	GATGAACGAA	ATAGACAGAT	CGCTGAGATA	GGTGCCTCAC
7841	TGATTAAGCA	TTGGTAACTG	TCAGACCAAG	TTTACTCATA	TATACTTTAG	ATTGATTTAA	AACTTCATTT	TTAATTTAAA
7921	AGGATCTAGG	TGAAGATCCT	TTTTGATAAT	CTCATGACCA	AAATCCCTTA	ACGTGAGTTT	TCGTTCCACT	GAGCGTCAGA
8001	CCCCGTAGAA	AAGATCAAAG	GATCTTCTTG	AGATCCTTTT	TTTCTGCGCG	TAATCTGCTG	CTTGCAAACA	AAAAAACCAC
	CGCTACCAGC	GGTGGTTTGT	TTGCCGGATC	AAGAGCTACC	AACTCTTTTT	CCGAAGGTAA	CTGGCTTCAG	CAGAGCGCAG

8081	АТАССАААТА	CTGTTCTTCT	AGTGTAGCCG	TAGTTAGGCC	ACCACTTCAA	GAACTCTGTA	GCACCGCCTA	CATACCTCGC
8161	TCTGCTAATC	CTGTTACCAG	TGGCTGCTGC	CAGTGGCGAT	AAGTCGTGTC	TTACCGGGTT	GGACTCAAGA	CGATAGTTAC
8241	CGGATAAGGC	GCAGCGGTCG	GGCTGAACGG	GGGGTTCGTG	CACACAGCCC	AGCTTGGAGC	GAACGACCTA	CACCGAACTG
8321	AGATACCTAC	AGCGTGAGCT	ATGAGAAAGC	GCCACGCTTC	CCGAAGAGAG	AAAGGCGGAC	AGGTATCCGG	TAAGCGGCAG
8401	GGTCGGAACA	GGAGAGCGCA	CGAGGGAGCT	TCCAGGGGGA	AACGCCTGGT	ATCTTTATAG	TCCTGTCGGG	TTTCGCCACC
8481	TCTGACTTGA	GCGTCGATTT	TTGTGATGCT	CGTCAGGGGG	GCGGAGCCTA	TGGAAAAACG	CCAGCAACGC	GGCCTTTTTA
8561	CGGTTCCTGG	CCTTTTGCTG	GCCTTTTGCT	CACATGTTCT	TTCCTGCGTT	ATCCCCTGAT	TCTGTGGATA	ACCGTATTAC
8641	CGCCTTTGAG	TGAGCTGATA	CCGCTCGCCG	CAGCCGAACG	ACCGAGCGCA	GCGAGTCAGT	GAGCGAGGAA	GCGGAAGAGC
8721	GCCCAATACG	CAAACCGCCT	CTCCCCGCGC	GTTGGCCGAT	TCATTAATGC	AGCTGGCACG	ACAGGTTTCC	CGACTGGAAA
8801	GCGGGCAGTG	AGCGCAACGC	AATTAATGTG	AGTTAGCTCA	CTCATTAGGC	ACCCCAGGCT	TTACACTTTA	TGCTTCCGGC
8881	TCGTATGTTG	TGTGGAATTG	TGAGCGGATA	ACAATTTCAC	ACAGGAAACA	GCTATGACCA	TGATTACGCC	AAGCGCGCAA
8961	TTAACCCTCA	CTAAAGGGAA	CAAAAGCTGG	AGCTGCAAGC	TT			
9041								

Validation by Restriction Enzyme Digestion

Restriction Enzymes	Cutting Sites	DNA Fragments (bp)
DrdI	6689, 8571	1882, 7200
SpeI	1922, 2642	720, 8362
ApaLI	4065, 5137, 7113, 8359	1072, 1976, 1246, 4788
EcoRI	5522	9082
DraIII	3951, 6645	2694, 6388
ApaLI+SpeI	1922, 2642, 4065, 5137, 7113, 8359	720, 1423, 1072, 1976, 1246, 2645
ApaLI+DrdI	4065, 5137, 6689, 7113, 8359, 8571	1072, 1552, 424, 1246, 212, 4576
ApaLI+EcoRI	4065, 5137, 5522, 7113, 8359	1072, 385, 1591, 1246, 4788
ApaLI+DraIII	3951, 4065, 5137, 6645, 7113, 8359	114, 1072, 1508, 468, 1246, 4674