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A B S T R A C T

The finite-time stabilizing control design problem for discrete-time conewise linear systems is
tackled in this paper. Such a class of systems consists of the union of ordinary linear time-
invariant subsystems, whose dynamics are defined in prescribed conical regions, constituting a
conical partition of the state space. By imposing some cone-copositivity properties to a suitable
piecewise quadratic function, two sufficient conditions are preliminarily derived concerning
the system’s finite-time stability. By building on them, novel results are then presented for
the system’s finite-time stabilization through a piecewise linear output feedback controller.
Such results are based on the solution of feasibility problems involving sets of Linear Matrix
Inequalities (LMIs). A numerical example illustrates the effectiveness of the proposed approach.

. Introduction

Conewise linear systems (CLSs) are collections of ordinary linear subsystems whose dynamics are constrained to cones belonging
o conical partitions of the state space [1–3]. At a higher level, they can be seen as a class of switched linear systems with a
tate-dependent switching rule, and, as such, equivalent to the interconnection of linear systems and finite automata [4,5]. Even
hough they seem a simple generalization of classical linear systems, their stability analysis turns out to be ‘‘surprisingly difficult
o characterize’’ [1]. The main reason is due to their intrinsic hybrid nature, which anyway justifies the major interest in their
tudy, corroborated by significant applications in multi-modal systems [6]. Indeed, continuous time CLSs (discrete-time CLSs are
heir sampled version) forms a class of Lipschitz piecewise linear systems subject to state-triggered mode switching [7]. Some
elevant examples can be found in [8], such as bimodal piecewise linear systems with continuous vector fields, and, in the context
f linear complementarity systems, linear cone complementarity systems. More examples, from various areas of engineering as well
s operations research, are available in [9,10]. A big effort has been spent recently on their classical Lyapunov stability analysis
nd stabilizing control design, see, e.g., [1,2,11]. Further approaches can be mentioned if we consider the more general category
f switched systems, both in the continuous-time (see, e.g., [5,12,13]) and the discrete-time context (see, e.g., [2,14,15]). On the
ontrary, a few results are available about their finite-time stability (FTS) as well as finite-time stabilization, which require a separate
iscussion.

Actually, there exist two main distinct definitions of FTS in the literature. On one side, a system is said to be finite-time stable
f all the state trajectories converge to the origin in finite time, when starting from a given initial domain [16–18]. Of course, such
definition needs system asymptotic Lyapunov stability as a pre-requisite. In this paper, we refer to an alternative FTS notion as

riginally proposed in [19,20] and then re-introduced more recently in, e.g., [21–23]. Roughly speaking, we call a system finite-time
table if, given a bound on the initial condition, its state remains within a specified region over a prefixed time interval. Also, if a
tatic output (state) feedback controller can be found that makes a closed-loop system finite-time stable, we say that system to be
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finite-time stabilizable through an output (state) feedback control. Being directly related to the system’s transient behavior, such
concepts have a different application field and meaning with respect to Lyapunov stability and stabilization [23].

A renewed and growing interest in recent years about this topic is testified by several papers for various categories of
ystems, see, among others, [24–29]. However, a limited literature exists dealing with the FTS analysis of switched systems with
rajectory-dependent switching signals specifically, and even fewer works have been dedicated to the related finite-time stabilization
roblem [30,31]. In [30] the problem of both finite-time stabilization and boundedness is addressed for switched continuous-time
ystems subject to state-dependent switching. The regions where the system modes are activated are assumed to be represented
hrough quadratic functions. In [31] the FTS and stabilization via both state and output feedback for discrete-time linear systems
ith state-dependent disturbances are discussed. Even though the FTS concept is the same we adopt in this paper, the system
escription differs. Indeed, in [31] the initial and the trajectory domains are assumed to be polyhedral, possibly unbounded and the
ormer can be not necessarily a subset of the latter. Moreover, the system state matrix is unique, whereas the disturbance signals
elong to a time-varying polyhedral set.

This paper focuses on the FTS and stabilization issues for discrete-time conewise linear systems. After recalling some preliminary
otions about cones, matrix cone-copositiveness, and piecewise quadratic domains in Section 2.1, the system mathematical model
onsidered is reported in Section 2.2, together with the solution concept and the formal FTS definition adopted. The initial and
he trajectory domains are assumed to be piecewise quadratic regions, which generalize the classical ellipsoidal domains. In the
ame section, two sufficient conditions to prove the FTS of discrete-time conewise linear systems are provided based on the use
f a suitable piecewise quadratic function. The problem of finite-time stabilization via a piecewise linear static output feedback
s discussed in Section 3, where some novel theoretical results are presented that allow avoiding the recourse to Bilinear Matrix
nequalities (BMI) or to overly conservative constraints relaxations. To show the effectiveness of the approach, an example is then
llustrated in Section 4. Finally, Section 5 concludes the paper.

. Preliminaries

.1. Notation and notions

Given an index set I = {1,… , 𝑝}, a polyhedral conical partition of R𝑛 is a collection of polyhedral cones C = {C𝑖}𝑖∈I satisfying
⋃

𝑖∈I C𝑖 = R𝑛 and int{C𝑖}∩ int{C𝑗} = ∅, for all 𝑖 ≠ 𝑗, where int(𝑋) denotes the (relevant) interior of a set 𝑋. Each cone of the partition
is closed and can be represented through its V-representation, i.e. as the conical hull of a finite number of rays (or generators), as
follows

C𝑖 = {𝑥 ∶ 𝑥 = 𝐸𝑖𝜃, 𝜃 ∈ R𝑚
+}, (1)

where 𝐸𝑖 ∈ R𝑛×𝑚 is the so-called ray matrix of the cone, whose columns are the cone extremal rays. An extremal ray of a polyhedral
cone is any nonzero vector of the cone that cannot be expressed as a positive linear combination of two other nonzero vectors in
the cone. It is important to note that the extremal rays are defined up to a positive scalar multiple, i.e., for a given polyhedral cone,
there are different ray matrices that can generate the same cone. For full-dimensional cones, it must be 𝑚 ≥ 𝑛. In case 𝑚 = 𝑛 the
cone is named simplicial and is characterized by an invertible ray matrix. If 𝑚 < 𝑛 the cone is said to be degenerate. Without loss
of generality, we assume that the conical partition enjoys the face-to-face property, i.e. the intersection between two cones of the
partition is either the origin or a whole common face, which is still a polyhedral (although degenerate) cone, whose ray matrix is
made of the common rays of the two cones.

A symmetric matrix 𝑀 ∈ R𝑛×𝑛 is said to be cone-copositive with respect to a cone C𝑖 of the partition if it is 𝑥𝑇𝑀𝑥 ≥ 0 for
any 𝑥 ∈ C𝑖, and the notation is 𝑀 ≥C𝑖

0. If equality only holds for 𝑥 = 0, then 𝑀 is said strictly cone-copositive and is denoted
by 𝑀 >C𝑖

0. In the particular case C𝑖 = R𝑛
+ (i.e., the nonnegative orthant), a (strictly) cone-copositive matrix is called (strictly)

copositive.
A piecewise quadratic function (PQF) defined over a conical partition C is a function of the type

FC(𝑥) = 𝑥𝑇𝐹𝑖𝑥, 𝑥 ∈ C𝑖, 𝑖 ∈ I, (2)

where 𝐹𝑖 ∈ R𝑛×𝑛 are symmetric positive definite matrices in the cone C𝑖. To enforce the continuity of (2) over C, the condition

𝑥𝑇𝐹𝑖𝑥 = 𝑥𝑇𝐹𝑗𝑥, 𝑥 ∈ C𝑖 ∩ C𝑗 , (3)

has to be satisfied for all 𝑖, 𝑗 ∈ I, 𝑖 ≠ 𝑗, such that C𝑖 ∩ C𝑗 ⧵ {0} ≠ ∅.1 Being the common face between two cones of the partition still
a polyhedral cone, condition (3) can be equivalently expressed by

𝐸𝑇
𝑖𝑗 (𝐹𝑖 − 𝐹𝑗 )𝐸𝑖𝑗 = 0, (4)

where 𝐸𝑖𝑗 is the ray matrix composed of the common extremal rays between C𝑖 and C𝑗 , see Lemma 8 in [3].
We can define a piecewise quadratic domain (PQD) over the conical partition C of a continuous PQF FC(𝑥) as

XFC
= {𝑥 ∶ FC(𝑥) ≤ 1, 𝑥 ∈ C𝑖, 𝑖 ∈ I}, (5)

i.e., as a compact set delimited by the unitary level curve of a PQF whose matrices satisfy the continuity conditions (4).
The set defined in (5) is a generalization of ellipsoidal domains, which is obtained when 𝐹𝑖 = 𝐹 > 0, for all 𝑖 ∈ I.

1 Obviously, being the cones of the partition also pointed, they all share the origin as common point, where the function (2) is continuous by definition.
2
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2.2. Finite-time stability of conewise systems

Let us consider the discrete-time conewise linear system

𝑥(𝑘 + 1) = 𝐴𝑖𝑥(𝑘), 𝑥(0) = 𝑥0, 𝑥(𝑘) ∈ C𝑖, (6)

where 𝑥 ∈ R𝑛, 𝐴𝑖 ∈ R𝑛×𝑛, 𝑖 ∈ I, defined over a polyhedral conical partition C = {C𝑖}𝑖∈I of the whole state space. The solution to (6)
from a given 𝑥(0) = 𝑥0, say 𝑥(𝑘; 𝑥0), always exists, but it can be not unique, in general, in the sense that the states sequence can be not
uniquely determined from the initial condition. Indeed, on the common boundaries of the cones, the dynamics are ambiguous, and
the state evolution depends on which rule is adopted to decide which dynamics to apply. If well-posedness is required, a continuity
condition of the right-hand side of (6) on the partition boundaries can be imposed [32], or the conical partition C can be assumed
to be strict [33], i.e. with pairwise disjoint and, hence, not necessarily closed cones, as similarly done in [2,12].

In general terms, we say system (6) to be finite-time stable with respect to given initial and trajectory domains if starting from
any state in the initial domain, all the possible trajectories evolve within the trajectory domain during a prescribed interval of time.2
More formally, we adapt the FTS concept in [23] to the discrete-time conewise linear systems class by choosing the initial and the
trajectory domains as PQDs, as shown below.

Definition 1. Given a positive integer 𝑁 and two PQDs, say XRC
and X𝛤C , defined over the conical partition C as

XRC
= {𝑥 ∶ RC(𝑥) ≤ 1, 𝑥 ∈ C𝑖, 𝑖 ∈ I}, (7)

X𝛤C = {𝑥 ∶ 𝛤C(𝑥) ≤ 1, 𝑥 ∈ C𝑖, 𝑖 ∈ I}, (8)

where RC(𝑥) and 𝛤C(𝑥) are piecewise quadratic functions defined as

RC(𝑥) = 𝑥𝑇𝑅𝑖𝑥, 𝑥 ∈ C𝑖, 𝑖 ∈ I, (9)

𝛤C(𝑥) = 𝑥𝑇𝛤𝑖𝑥, 𝑥 ∈ C𝑖, 𝑖 ∈ I, (10)

with 𝑅𝑖, 𝛤𝑖 symmetric positive definite matrices in the cone C𝑖, satisfying 𝐸𝑇
𝑖𝑗 (𝑅𝑖 − 𝑅𝑗 )𝐸𝑖𝑗 = 0, 𝐸𝑇

𝑖𝑗 (𝛤𝑖 − 𝛤𝑗 )𝐸𝑖𝑗 = 0, respectively,
∀𝑖, 𝑗 ∈ I such that C𝑖 ∩ C𝑗 ⧵ {0} ≠ ∅, the conewise linear discrete-time system (6) is said to be finite-time stable with respect to
(0, 𝑁,XRC

,X𝛤C ) if

𝑥0 ∈ XRC
⟹ 𝑥(𝑘; 𝑥0) ∈ X𝛤C ,∀𝑘 ∈ {0,… , 𝑁}, (11)

for any trajectory 𝑥(𝑘; 𝑥0) starting from 𝑥0.

Note that the inclusion of continuity conditions in the above definition is a common assumption in the literature of FTS, see,
e.g., [23], and it is essential to prevent ambiguity regarding the classification of boundary points within the initial or trajectory
domains.

A sufficient condition for the FTS of (6) in the sense of Definition 1 is given by the following result.

Theorem 2. Given a positive integer 𝑁 , two PQDs, XRC
and X𝛤C , defined over a conical partition C of R𝑛 as in (7), (8), and a real

scalar 𝛾 ≥ 1, the conewise system (6) is finite-time stable with respect to (0, 𝑁,XRC
,X𝛤C ) if there exist a piecewise quadratic function

PC(𝑥) = 𝑥𝑇 𝑃𝑖𝑥, 𝑥 ∈ C𝑖, 𝑖 ∈ I, (12)

i.e., symmetric positive definite matrices 𝑃𝑖, and a positive real number 𝜆, verifying the conditions

𝛾𝑃𝑖 − 𝐴𝑇
𝑖 𝑃𝑗𝐴𝑖 >C𝑖

0, (13a)

𝑃𝑖 − 𝛤𝑖 ≥C𝑖
0, (13b)

𝜆𝑅𝑖 − 𝑃𝑖 ≥C𝑖
0, (13c)

1 − 𝛾𝑁𝜆 ≥ 0, (13d)

for all 𝑖, 𝑗 ∈ I.

Proof. Let us consider the PQF PC(𝑥) in (12) and an 𝑥0 ∈ XRC
, i.e., such that RC(𝑥0) ≤ 1. Note that, thanks to the continuity of

(9), the condition RC(𝑥0) ≤ 1 is well-defined also for initial points chosen on the boundaries of the cones. From (13b), (13c) it is

𝛤C(𝑥(𝑘)) ≤ PC(𝑥(𝑘)), (14a)

PC(𝑥(𝑘)) ≤ 𝜆RC(𝑥(𝑘)), (14b)

2 By extending the concepts proposed in [2, Sec.II], we could further distinguish between a strong and a weak finite-time stability, depending on whether
3

uch property is required for any trajectory starting from 𝑥0 or for at least one. In this paper, we refer to a strong finite-time stability definition.
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for any trajectory 𝑥(𝑘; 𝑥0) = 𝑥(𝑘),3 𝑘 ∈ {0,… , 𝑁}.
Without any loss of generality, assume that 𝑥(𝑘 + 1) ∈ C𝑗 and 𝑥(𝑘) ∈ C𝑖. Condition (13a) then implies that

PC(𝑥(𝑘 + 1)) < 𝛾PC(𝑥(𝑘)). (15)

By iterating (15), it is

PC(𝑥(𝑘)) < 𝛾𝑘PC(𝑥0), ∀𝑘 ∈ {1,… , 𝑁}. (16)

Being 𝛾 ≥ 1 and 𝑥0 ∈ XRC
, we can write from (14b)

𝛾𝑘PC(𝑥0) ≤ 𝛾𝑁𝜆RC(𝑥0) ≤ 𝛾𝑁𝜆. (17)

From (14a), (16) and (17), we have

𝑥(𝑘)𝑇𝛤𝑖𝑥(𝑘) ≤ 𝑥(𝑘)𝑇 𝑃𝑖𝑥(𝑘) < 𝛾𝑘𝑥𝑇0 𝑃𝑖𝑥0 ≤ 𝛾𝑁𝜆, ∀𝑖 ∈ I, (18)

for any 𝑥0 ∈ XRC
and for all 𝑘 ∈ {1,… , 𝑁}. Hence, from (13d) it implies

𝑥(𝑘)𝑇𝛤𝑖𝑥(𝑘) < 𝛾𝑁𝜆 ≤ 1, ∀𝑖 ∈ I, ∀𝑘 ∈ {1,… , 𝑁}. (19)

From (14a), (14b), it is also 𝑥𝑇0 𝛤𝑖𝑥0 ≤ 𝑥𝑇0 𝑃𝑖𝑥0 ≤ 1, ∀𝑖 ∈ I, i.e., we can conclude that 𝛤C(𝑥(𝑘)) ≤ 1, for all 𝑘 ∈ {0,… , 𝑁}. Note that,
thanks to the continuity of (10), condition 𝛤C(𝑥(𝑘)) ≤ 1 is well-defined and unambiguously implies 𝑥(𝑘) ∈ X𝛤C also for points 𝑥(𝑘)
located on the boundaries of the cones. As a result, we proved that if 𝑥0 ∈ XRC

then 𝑥(𝑘) ∈ X𝛤C , ∀𝑘 ∈ {0,… , 𝑁}, for all possible
solutions, that is to say, the system (6) is finite-time stable with respect to (0, 𝑁,XRC

,X𝛤C ). □

Before introducing some relevant comments on the above finite time stability result, it is worth noticing that the simultaneous
scaling of the initial and trajectory domains do not affect the feasibility of the LMI set (13), being the solution to the LMIs (i.e., the
set of matrices that satisfy the inequalities) involved not unique and defined up to a multiplying constant. Such a consideration
holds for all the theoretical results presented in this paper. Moreover, as regards the scalar parameters, while 𝜆 is an optimization
variable, 𝛾 is heuristically determined in order to avoid BMIs.

Remark 3. In (13a) all the combinations among the cones are considered since the state can jump to non-adjacent cones. Such an
approach can be overly conservative since it would be sufficient to include only the pairs of cones involved in a one-step trajectory
evolution. To actually determine all the cone transitions allowed, a reachability analysis has to be performed, which is known to
be a linear programming problem [34]. In the framework of this paper, a simplified approach can be employed. Indeed, the image
of each polyhedral cone of the partition under the linear map represented by the matrix of the associated linear dynamics is still a
polyhedral cone, whose ray matrix is obtained by multiplying the system matrix with the ray matrix of the original cone. This way
the image cone can be determined and the number of combinations to consider (i.e., the number of LMIs) can be reduced if such a
cone is contained in one of the cones of the partition.

Remark 4. Conditions (13c), (13d) can be generalized to the case of different parameters 𝜆𝑖 > 0 for each cone C𝑖 of the partition.
Indeed, having a unique parameter 𝜆 for all the cones corresponds to considering 𝜆 = max𝑖∈I 𝜆𝑖, which is always well defined being
the conic partition finite.

Remark 5. Suppose the condition (13a) holds with 𝛾 = 1. In that case, the PQF (12) is strictly decreasing along the system
trajectories, which, via standard Lyapunov arguments, implies that the system (6) is also asymptotically stable [11].

Remark 6. In Theorem 2, the PQF (12) does not need to be continuous across the boundaries of the cones to prove the system
finite-time stability, i.e. the matrices 𝑃𝑖 are not required to satisfy the continuity condition (4).

The FTS conditions in Theorem 2 are not operative, since they require the sign checking for all the points of each cone of the
partition. The next theorem provides a sufficient condition based on the feasibility of a set of LMIs, i.e. of a convex problem [35,36],
that can be numerically solved in an efficient way [37].

Theorem 7. Given a positive integer 𝑁 , two PQDs, XRC
and X𝛤C , defined over a conical partition C of R𝑛, and a real scalar 𝛾 ≥ 1,

the conewise system (6) is finite-time stable with respect to (0, 𝑁,XRC
,X𝛤C ) if there exist symmetric positive definite matrices 𝑃𝑖, symmetric

entrywise positive matrices 𝑇𝑖, symmetric entrywise nonnegative matrices 𝑈𝑖,𝑊𝑖, of appropriate dimensions, for 𝑖 ∈ I, and a positive real
number 𝜆, such that the set of LMIs

𝐸𝑇
𝑖 (𝛾𝑃𝑖 − 𝐴𝑇

𝑖 𝑃𝑗𝐴𝑖)𝐸𝑖 − 𝑇𝑖 > 0, (20a)

𝐸𝑇
𝑖 (𝑃𝑖 − 𝛤𝑖)𝐸𝑖 − 𝑈𝑖 ≥ 0, (20b)

3 For notation simplicity, we omit the dependency on the initial condition.
4
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𝐸𝑇
𝑖 (𝜆𝑅𝑖 − 𝑃𝑖)𝐸𝑖 −𝑊𝑖 ≥ 0, (20c)

1 − 𝛾𝑁𝜆 ≥ 0, (20d)

is feasible, for all 𝑖, 𝑗 ∈ I.

Proof. Let us consider the function PC(𝑥) defined in (12), together with the PQDs XRC
and X𝛤C defined in (7) and (8), respectively.

We know from Theorem 2 that conditions (13a)–(13d) imply the FTS of the discrete-time conewise linear system (6) with respect to
the PQDs XRC

and X𝛤C . Furthermore, any (strict) cone-copositive condition on a convex polyhedral cone, as in (13a), (13b), (13c)
an be transformed into a (strict) copositive condition by using the cone ray matrix [3]. More specifically, it is

𝛾𝑃𝑖 − 𝐴𝑇
𝑖 𝑃𝑗𝐴𝑖 >C𝑖

0 ⟺ 𝐸𝑇
𝑖 (𝛾𝑃𝑖 − 𝐴𝑇

𝑖 𝑃𝑗𝐴𝑖)𝐸𝑖 >R𝑛
+
0, (21a)

𝑃𝑖 − 𝛤𝑖 ≥C𝑖
0 ⟺ 𝐸𝑇

𝑖 (𝑃𝑖 − 𝛤𝑖)𝐸𝑖 ≥R𝑛
+
0, (21b)

𝜆𝑅𝑖 − 𝑃𝑖 ≥C𝑖
0 ⟺ 𝐸𝑇

𝑖 (𝜆𝑅𝑖 − 𝑃𝑖)𝐸𝑖 ≥R𝑛
+
0. (21c)

Now conditions (20a), (20b), (20c), with 𝑇𝑖 entrywise positive matrices and 𝑈𝑖,𝑊𝑖 entrywise nonnegative matrices, imply the
corresponding (strict) copositive conditions in (21a), (21b), (21c) (see Lemma 7 in [38]), and, hence, (13a), (13b), (13c). Finally,
if also (20d) is satisfied, by virtue of Theorem 2 we can then conclude that the system (6) is finite-time stable in the sense of
Definition 1. □

3. Finite-time stabilization via static output feedback

The FTS notion can be generalized to the framework of finite-time stabilization via static output feedback control by considering
the discrete-time conewise linear system in a closed-loop with a static controller and setting the related FTS problem. This topic is
sufficiently general, considering that any dynamic output feedback controller of an order less or equal to the system’s order can be
returned to the static output feedback case [39]. More formally, we tackle the following problem.

Problem 8. Consider the controlled discrete-time conewise linear system, having the representation

𝑥(𝑘 + 1) = 𝐴𝑖𝑥(𝑘) + 𝐵𝑖𝑢(𝑘), 𝑥(0) = 𝑥0, 𝑥(𝑘) ∈ C𝑖, (22a)

𝑦(𝑘) = 𝐶𝑖𝑥(𝑘), (22b)

defined over a polyhedral conical partition C = {C𝑖}𝑖∈I of the whole state space, where 𝑢(𝑘) ∈ R𝑟 is the feedback control input and
𝑦(𝑘) ∈ R𝑞 is the output. Given a positive integer 𝑁 and two PQDs XRC

,X𝛤C , the finite-time stabilization problem via (piecewise
linear) static output feedback for the system (22) consists in finding feedback gain matrices 𝐾𝑖 ∈ R𝑟×𝑞 such that the controller
𝑢(𝑘) = 𝐾𝑖𝐶𝑖𝑥(𝑘), when 𝑥(𝑘) ∈ C𝑖, 𝑖 ∈ I, makes the closed-loop system

𝑥(𝑘 + 1) = (𝐴𝑖 + 𝐵𝑖𝐾𝑖𝐶𝑖)𝑥(𝑘), 𝑥(0) = 𝑥0, 𝑥(𝑘) ∈ C𝑖, (23a)

𝑦(𝑘) = 𝐶𝑖𝑥(𝑘), (23b)

finite-time stable with respect to (0, 𝑁,XRC
,X𝛤C ).

Note that the static output controller includes as a special case the state feedback controller when all the output matrices 𝐶𝑖 are
identity matrices 𝐼 .

To solve Problem 8, the results of Theorem 7 can be in principle applied to the system (23), by replacing in (20a) the matrices
𝐴𝑖 with the closed-loop system matrices 𝐴𝑖 + 𝐵𝑖𝐾𝑖𝐶𝑖. However, the LMI conditions (20a) turn into the inequalities

𝐸𝑇
𝑖 (𝛾𝑃𝑖 − (𝐴𝑖 + 𝐵𝑖𝐾𝑖𝐶𝑖)𝑇 𝑃𝑗 (𝐴𝑖 + 𝐵𝑖𝐾𝑖𝐶𝑖))𝐸𝑖 − 𝑇𝑖 > 0, (24)

for all 𝑖, 𝑗 ∈ I, which are not jointly convex in the variables 𝑃𝑗 , 𝐾𝑖. One possible approach consists in resorting to a Bilinear Matrix
Inequality (BMI) formulation, which is known to be nonconvex and not to provide any guarantee to find an optimal (or even a
feasible) solution, in general, [5]. In case of state feedback, a usual method can be applied, which requires the relaxation of all the
original cone-copositive conditions in Theorem 2, rewritten for the closed-loop system (23) with 𝐶𝑖 = 𝐼 , to the whole state space
and the use of Schur complements [12,35]. However, such an approach is conservative and, in addition, cannot be extended to the
case of output feedback.

In the next subsections we will show that, under the hypothesis of input matrices 𝐵𝑖 of full column rank, or of output matrices
𝐶𝑖 of full row rank, convexity can be recovered, even in the static output feedback case, without resorting to a relaxation to the
whole state space. In particular, in order to obtain analogous LMI conditions, we will start from the results of Theorem 7 (which
stem from Theorem 2) and combine them with a suitable generalization and adaptation of the ideas behind the so-called 𝑃 -problem
and 𝑄-problem [40]. These ideas are well-established in the literature for the standard (Lyapunov) asymptotic stabilization problem
and specifically for a single LTI system. Their extension to systems with multiple dynamics and their integration into the framework
5

of output feedback finite-time stabilization of conewise linear systems represent the main contribution of this section.
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3.1. Finite-time stabilization with 𝐵𝑖 full column rank

Suppose that the matrices 𝐵𝑖 in the closed-loop model (23) are full column rank. We can extend the FTS result of Theorem 7 to
olve Problem 8 as detailed below.

heorem 9. Consider the closed-loop discrete-time conewise linear system (23) with 𝐵𝑖 full column rank. Choose a positive integer 𝑁 , two
PQDs, XRC

and X𝛤C , and a real scalar 𝛾 ≥ 1. If there exist symmetric positive definite matrices 𝑃𝑖, symmetric entrywise positive matrices
𝑇𝑖, symmetric entrywise nonnegative matrices 𝑈𝑖,𝑊𝑖, of appropriate dimensions, and a positive real number 𝜆, such that set of LMIs

(

𝐸𝑇
𝑖 𝛾𝑃𝑖𝐸𝑖 − 𝑇𝑖 𝐸𝑇

𝑖 (𝐴
𝑇
𝑖 𝑃𝑗 + 𝐶𝑇

𝑖 𝐺
𝑇
𝑖 𝐵

𝑇
𝑖 )

(𝑃𝑗𝐴𝑖 + 𝐵𝑖𝐺𝑖𝐶𝑖)𝐸𝑖 𝑃𝑗

)

> 0, (25a)

𝐸𝑇
𝑖 (𝑃𝑖 − 𝛤𝑖)𝐸𝑖 − 𝑈𝑖 ≥ 0, (25b)

𝐸𝑇
𝑖 (𝜆𝑅𝑖 − 𝑃𝑖)𝐸𝑖 −𝑊𝑖 ≥ 0, (25c)

1 − 𝛾𝑁𝜆 ≥ 0, (25d)

is satisfied for all 𝑖, 𝑗 ∈ I, then the control law 𝑢(𝑘) = 𝐾𝑖𝐶𝑖𝑥(𝑘), 𝑥(𝑘) ∈ C𝑖, with 𝐾𝑖 = 𝐹−1
𝑖 𝐺𝑖 and 𝐹𝑖 such that 𝐵𝑖𝐹𝑖 = 𝑃𝑗𝐵𝑖, makes the

controlled conewise system (23) finite-time stable with respect to (0, 𝑁,XRC
,X𝛤C ).

Proof. The proof resumes the arguments we have introduced above. Let us consider a static output feedback control law for the
controlled conewise linear system (22) of the type 𝑢(𝑘) = 𝐾𝑖𝐶𝑖𝑥(𝑘), for 𝑥(𝑘) ∈ C𝑖, and a piecewise quadratic function PC(𝑥) = 𝑥𝑇 𝑃𝑖𝑥,
𝑥 ∈ C𝑖, 𝑖 ∈ I. Being 𝐵𝑖 of full column rank, it is useful to apply (an adaptation of) the feasibility problem known as 𝑃 -problem
in [40, Sec. III]. Indeed, given the matrices 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, with 𝐵𝑖 of full column rank for all 𝑖 ∈ I, and the scalar 𝛾 ≥ 1, we can deduce
from [40] that if there exist symmetric positive definite matrices 𝑃𝑖, symmetric entrywise positive matrices 𝑇𝑖, and matrices 𝐺𝑖, of
appropriate dimensions, that solve the set of conditions

(

𝐸𝑇
𝑖 𝛾𝑃𝑖𝐸𝑖 − 𝑇𝑖 𝐸𝑇

𝑖 (𝐴
𝑇
𝑖 𝑃𝑗 + 𝐶𝑇

𝑖 𝐺
𝑇
𝑖 𝐵

𝑇
𝑖 )

(𝑃𝑗𝐴𝑖 + 𝐵𝑖𝐺𝑖𝐶𝑖)𝐸𝑖 𝑃𝑗

)

> 0, (26)

for all 𝑖, 𝑗 ∈ I, then the inequalities (24) are satisfied with 𝐾𝑖 = 𝐹−1
𝑖 𝐺𝑖, being 𝐹𝑖 a solution of 𝐵𝑖𝐹𝑖 = 𝑃𝑗𝐵𝑖.4 As a result, if (25a) hold

then there exist matrices 𝐹𝑖 such that 𝐵𝑖𝐹𝑖 = 𝑃𝑗𝐵𝑖, and, moreover, for 𝐾𝑖 = 𝐹−1
𝑖 𝐺𝑖 conditions (24) are satisfied. If also (25b)–(25d)

hold, by following the same steps of the proofs of Theorems 2 and 7, we can conclude that the feedback control law 𝑢(𝑘) = 𝐾𝑖𝐶𝑖𝑥(𝑘),
for 𝑥(𝑘) ∈ C𝑖, with 𝐾𝑖 = 𝐹−1

𝑖 𝐺𝑖, 𝑖 ∈ I, renders the closed loop system (23) finite-time stable with respect to (0, 𝑁,XRC
,X𝛤C ). □

3.2. Finite-time stabilization with 𝐶𝑖 full row rank

If the input matrices 𝐵𝑖 are not full column rank, under the hypothesis that the output matrices 𝐶𝑖 are full row rank and the
cones C𝑖 of the partition are full-dimensional and simplicial, it is still possible to recast the finite-time stabilization conditions as a
set of LMIs. The latter assumption is sufficiently general, by considering that any full-dimensional convex polyhedral cone can be
subdivided into a finite number of simplicial cones [41], and any cone-copositive condition on it can then be equivalently replaced
by a finite set of sign conditions on the simplicial cones of its partition.

Let us consider the cone-copositive conditions 𝛾𝑃𝑖 − 𝐴𝑇
𝑖 𝑃𝑗𝐴𝑖 >C𝑖

0, 𝑖, 𝑗 ∈ I preliminarily, and assume that the cones C𝑖 are
simplicial, i.e. the ray matrices 𝐸𝑖 are square and invertible, for all 𝑖 ∈ I. Such inequalities are cone-constrained and can be
equivalently rewritten in terms of the matrix 𝑄𝑖 = 𝑃−1

𝑖 by pre and post multiplying by 𝑄𝑖:

𝛾𝑃𝑖 − 𝐴𝑇
𝑖 𝑃𝑗𝐴𝑖 >C𝑖

0 ⟺ 𝛾𝑄𝑖 −𝑄𝑖𝐴
𝑇
𝑖 𝑃𝑗𝐴𝑖𝑄𝑖 ≥C̃𝑖

0. (27)

Indeed, we are substituting the strict cone-copositive condition 𝑥𝑇 (𝛾𝑃𝑖 − 𝐴𝑇
𝑖 𝑃𝑗𝐴𝑖)𝑥 > 0, 𝑥 ∈ C𝑖, with the equivalent 𝑦𝑇 (𝛾𝑄𝑖 −

𝑄𝑖𝐴𝑇
𝑖 𝑃𝑗𝐴𝑖𝑄𝑖)𝑦 > 0, 𝑦 ∈ C̃𝑖, where 𝑦 = 𝑃𝑖𝑥 ∈ C̃𝑖, i.e. C̃𝑖 is still a simplicial cone, whose ray matrix is 𝑃𝑖𝐸𝑖. We are interested in

the situation where these two cones coincide. The next Lemma provides an answer to this issue.

Lemma 10. The two simplicial cones C𝑖 and C̃𝑖 coincide if the matrix 𝐸−1
𝑖 𝑃𝑖𝐸𝑖 is a nonnegative monomial matrix.5

Proof. For each point 𝑥∗ ∈ C𝑖 there exists a 𝜃∗ ∈ R𝑛
+ such that 𝑥∗ = 𝐸𝑖𝜃∗, which is 𝜃∗ = 𝐸−1

𝑖 𝑥∗ ≥ 0 by construction. Such a
point belongs also to C̃𝑖, because there always exists a nonnegative 𝜃 = 𝐸−1

𝑖 𝑄𝑖𝐸𝑖𝜃∗ ≥ 0 (being 𝐸−1
𝑖 𝑄𝑖𝐸𝑖 a nonnegative matrix,6)

such that it is also 𝑥∗ = 𝑃𝑖𝐸𝑖𝜃, i.e. C𝑖 ⊆ C̃𝑖. Vice versa, for each 𝑦∗ ∈ C̃𝑖, there exists a 𝜃∗ ∈ R𝑛
+ such that 𝑦∗ = 𝑃𝑖𝐸𝑖𝜃∗, which is

𝜃∗ = 𝐸−1
𝑖 𝑄𝑖𝑦∗ ≥ 0 by construction. This point belongs alto to C𝑖, because there always exists a nonnegative 𝜃 = 𝐸−1

𝑖 𝑃𝑖𝐸𝑖𝜃∗ ≥ 0 (being
𝐸−1
𝑖 𝑃𝑖𝐸𝑖 a nonnegative matrix), such that it is also 𝑦∗ = 𝐸𝑖𝜃, i.e. C̃𝑖 ⊆ C𝑖. As a result, it is C̃𝑖 ≡ C𝑖. □

4 Since 𝐵𝑖 is full column rank, 𝐹𝑖 always exists and is invertible [40].
5 A nonnegative monomial matrix is a nonnegative square matrix with exactly one element in each row and column which is not 0, i.e. it is the permutation

of a positive diagonal matrix.
6 The inverse of a nonnegative matrix is still nonnegative iff it is monomial [42].
6
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If Lemma 10 holds ∀𝑖 ∈ I, then, analogously to (21a), it is

𝛾𝑄𝑖 −𝑄𝑖𝐴
𝑇
𝑖 𝑃𝑗𝐴𝑖𝑄𝑖 >C𝑖

0 ⟺ 𝐸𝑇
𝑖 (𝛾𝑄𝑖 −𝑄𝑖𝐴

𝑇
𝑖 𝑃𝑗𝐴𝑖𝑄𝑖)𝐸𝑖 >R𝑛

+
0. (28)

Conditions (28), in turn, are implied by the inequalities:

𝛾𝐸𝑇
𝑖 𝑄𝑖𝐸𝑖 − 𝐸𝑇

𝑖 𝑄𝑖𝐴
𝑇
𝑖 𝑃𝑗𝐴𝑖𝑄𝑖𝐸𝑖 − 𝑉𝑖 > 0, ∀𝑖, 𝑗 ∈ I, (29)

where 𝑉𝑖 are symmetric entrywise positive matrices to be determined [38]. Thanks to the Schur complements formula, condi-
tions (29) is implied by:

(

𝐸𝑇
𝑖 𝛾𝑄𝑖𝐸𝑖 − 𝑉𝑖 𝐸𝑇

𝑖 𝑄𝑖𝐴𝑇
𝑖

𝐴𝑖𝑄𝑖𝐸𝑖 𝑄𝑗

)

> 0, ∀𝑖, 𝑗 ∈ I. (30)

If we now replace 𝐴𝑖 with the closed-loop state matrices 𝐴𝑖 + 𝐵𝑖𝐾𝑖𝐶𝑖, conditions (30) become
(

𝐸𝑇
𝑖 𝛾𝑄𝑖𝐸𝑖 − 𝑉𝑖 𝐸𝑇

𝑖 𝑄𝑖(𝐴𝑖 + 𝐵𝑖𝐾𝑖𝐶𝑖)𝑇

(𝐴𝑖 + 𝐵𝑖𝐾𝑖𝐶𝑖)𝑄𝑖𝐸𝑖 𝑄𝑗

)

> 0, ∀𝑖, 𝑗 ∈ I, (31)

which are nonconvex in 𝑄𝑖, 𝐾𝑖. The following result shows how an alternative sufficient condition for the static output stabilizability
of system (23) can be derived by turning (31) into LMIs.

Theorem 11. Consider the closed-loop discrete-time conewise linear system (23) and suppose all the cones of the partition C𝑖 be simplicial
and all the output matrices 𝐶𝑖 be full row rank. Choose a positive integer 𝑁 , two PQDs, XRC

and X𝛤C , and a positive real scalar 𝛾 ≥ 1. If
there exist symmetric positive definite matrices 𝑄𝑖, with 𝐸−1

𝑖 𝑄𝑖𝐸𝑖 nonnegative monomial matrices, symmetric entrywise positive matrices 𝑉𝑖,
symmetric entrywise nonnegative matrices 𝑈𝑖,𝑊𝑖, matrices 𝐺𝑖, of appropriate dimensions, and a positive real number 𝜆, such that the set of
LMIs

(

𝐸𝑇
𝑖 𝛾𝑄𝑖𝐸𝑖 − 𝑉𝑖 𝐸𝑇

𝑖 (𝑄𝑖𝐴𝑇
𝑖 + 𝐶𝑇

𝑖 𝐺
𝑇
𝑖 𝐵

𝑇
𝑖 )

(𝐴𝑖𝑄𝑖 + 𝐵𝑖𝐺𝑖𝐶𝑖)𝐸𝑖 𝑄𝑗

)

> 0, (32a)
(

𝐸𝑇
𝑖 𝑄𝑖𝐸𝑖 − 𝑈𝑖 𝐸𝑇

𝑖 𝑄𝑖
𝑄𝑖𝐸𝑖 𝛤−1

𝑖

)

≥ 0, (32b)
(

𝐸𝑇
𝑖 𝜆𝑅𝑖𝐸𝑖 −𝑊𝑖 𝐸𝑇

𝑖
𝐸𝑖 𝑄𝑖

)

≥ 0, (32c)

1 − 𝛾𝑁𝜆 ≥ 0, (32d)

is satisfied for all 𝑖, 𝑗 ∈ I, then the control law 𝑢(𝑘) = 𝐾𝑖𝐶𝑖𝑥(𝑘), 𝑥(𝑘) ∈ C𝑖, with 𝐾𝑖 = 𝐺𝑖𝐹−1
𝑖 and 𝐹𝑖 such that 𝐹𝑖𝐶𝑖 = 𝐶𝑖𝑄𝑗 , makes the

controlled conewise system (23) finite-time stable with respect to (0, 𝑁,XRC
,X𝛤C ).

Proof. The finite-time stabilization conditions obtained by applying Theorem 2 to the controlled conewise system (23) are expressed
in terms of matrices 𝑃𝑖. Such conditions can be expressed in terms of 𝑄𝑖 = 𝑃−1

𝑖 when the cones C𝑖 of the partition are simplicial
and 𝐸−1

𝑖 𝑄𝑖𝐸𝑖 are monomial matrices. We know from the so-called 𝑄-problem, adapted from [40, Sec.III] that given the matrices
𝐴𝑖, 𝐵𝑖, 𝐶𝑖, with 𝐶𝑖 of full row rank for all 𝑖 ∈ I, and the scalar 𝛾 ≥ 1, if there exist symmetric positive definite matrices 𝑄𝑖, symmetric
entrywise positive matrices 𝑉𝑖, and matrices 𝐺𝑖, of appropriate dimensions, that solve the set of conditions

(

𝐸𝑇
𝑖 𝛾𝑄𝑖𝐸𝑖 − 𝑉𝑖 𝐸𝑇

𝑖 (𝑄𝑖𝐴𝑇
𝑖 + 𝐶𝑇

𝑖 𝐺
𝑇
𝑖 𝐵

𝑇
𝑖 )

(𝐴𝑖𝑄𝑖 + 𝐵𝑖𝐺𝑖𝐶𝑖)𝐸𝑖 𝑄𝑗

)

> 0, ∀𝑖, 𝑗 ∈ I. (33)

for all 𝑖, 𝑗 ∈ I, then the inequalities (31) are satisfied with 𝐾𝑖 = 𝐺𝑖𝐹−1
𝑖 , being 𝐹𝑖 a solution of 𝐹𝑖𝐶𝑖 = 𝐶𝑖𝑄𝑗 .7 As a result, if (32a) hold

and there exist matrices 𝐹𝑖 such that 𝐹𝑖𝐶𝑖 = 𝐶𝑖𝑄𝑗 , then for 𝐾𝑖 = 𝐺−1
𝑖 𝐹𝑖 conditions (31) are satisfied for all 𝑖, 𝑗 ∈ I. In turn, we have

shown that such inequalities, in the case of simplicial cones and 𝐸−1
𝑖 𝑄𝑖𝐸𝑖 monomial matrices, imply

𝛾𝑃𝑖 − (𝐴𝑖 + 𝐵𝑖𝐾𝑖)𝑇 𝑃𝑗 (𝐴𝑖 + 𝐵𝑖𝐾𝑖) >C𝑖
0 (34)

for all 𝑖, 𝑗 ∈ I, which corresponds to (13a) extended to (23).
Similarly, from (32b), (32c) and applying the Schur complements, we have

𝐸𝑇
𝑖 (𝑄𝑖 −𝑄𝑖𝛤𝑖𝑄𝑖)𝐸𝑖 − 𝑈𝑖 ≥ 0 ⟹ 𝑄𝑖 −𝑄𝑖𝛤𝑖𝑄𝑖 ≥C𝑖

0

⟺ 𝑃𝑖 − 𝛤𝑖 ≥C𝑖
0, (35)

and

𝐸𝑇
𝑖 (𝜆𝑅𝑖 −𝑄−1

𝑖 )𝐸𝑖 −𝑊𝑖 ≥ 0 ⟹ 𝜆𝑅𝑖 − 𝑃𝑖 ≥C𝑖
0, (36)

respectively. If also (32d) is satisfied, by using the same arguments of Theorem 2 we can state that the controller 𝑢(𝑘) = 𝐾𝑖𝐶𝑖𝑥(𝑘),
𝑥(𝑘) ∈ C𝑖, 𝑖 ∈ I, makes the closed-loop system (23) finite-time stable with respect to (0, 𝑁,XRC

,X𝛤C ). □

7 Since 𝐶 is full row rank, 𝐹 always exists and is invertible [40].
7
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Fig. 1. State evolution in 𝑁 = 10 steps from 𝑥0 = ( 1
2
, 1
2
, 1
2
)𝑇 for the system (22) defined by (37)–(39), in open-loop (red line) and in closed-loop (green line)

when applying the piecewise linear output feedback controller defined by (41). The boundary of the initial domain and the trajectory domain are highlighted
with a dark gray surface and a light gray surface, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Remark 12. It could happen that the matrices 𝐵𝑖 are not full column rank only for some indices 𝑖 ∈ I, whilst the matrices 𝐶𝑖 are
full row rank for the same indices. In these mixed cases, one could merge the conditions of both Theorems 9 and 11, differentiating
according to the appropriate indices.

4. Illustrative example

In this section, we present an example of a controlled discrete-time conewise linear system as in (22), derived from the zero-
order-hold (ZOH) time-discretization of a continuous-time conewise system adapted from Example 2 in [43]. More specifically, it
is

𝐴1 = 𝐴2 = 𝐴3 = 𝐴4 = 𝑒

(

0 −1 𝛿(1+𝛿2)
1 0 0
0 1 0

)

𝑇𝑠
, (37a)

𝐴5 = 𝐴6 = 𝐴7 = 𝐴8 = 𝑒

(

0 −1 −𝛿(1+𝛿2)
1 0 0
0 1 0

)

𝑇𝑠
, (37b)

with 𝑇𝑠 = 0.1, 𝛿 = 0.5, and

𝐵𝑖 =
( 1

0
0

)

, 𝐶𝑖 = ( 1 1 1 ) , 𝑖 ∈ I = {1,… , 8}. (38)

The state space R3 is partitioned into the 8 orthants, i.e. into 8 polyhedral cones C𝑖 whose ray matrices are

𝐸1 =
( 1 0 0

0 1 0
0 0 1

)

, 𝐸2 =
( −1 0 0

0 1 0
0 0 1

)

, 𝐸3 =
( −1 0 0

0 −1 0
0 0 1

)

, 𝐸4 =
( 1 0 0

0 −1 0
0 0 1

)

, (39a)

𝐸5 =
( 1 0 0

0 1 0
0 0 −1

)

, 𝐸6 =
( −1 0 0

0 1 0
0 0 −1

)

, 𝐸7 =
( −1 0 0

0 −1 0
0 0 −1

)

, 𝐸8 =
( 1 0 0

0 −1 0
0 0 −1

)

. (39b)

Choose 𝑁 = 10, the PQDs XRC
, X𝛤C related to the PQFs RC, 𝛤C defined by the matrices8

𝑅1 =
( 1 0 0

0 1 0
0 0 1

)

, 𝑅2 =
( 2 0 0

0 1 0
0 0 1

)

, 𝑅3 =
( 2 0 0

0 2 0
0 0 1

)

, 𝑅4 =
( 1 0 0

0 2 0
0 0 1

)

, (40a)

𝑅5 =
( 1 0 0

0 1 0
0 0 2

)

, 𝑅6 =
( 2 0 0

0 1 0
0 0 2

)

, 𝑅7 =
( 2 0 0

0 2 0
0 0 2

)

, 𝑅8 =
( 1 0 0

0 2 0
0 0 2

)

, (40b)

𝛤𝑖 =
4
9
𝑅𝑖, for all 𝑖 ∈ I, (40c)

and 𝛾 = 1.1. In Fig. 1 the dark gray surface represents the boundary of the initial domain XRC
, while the light gray surface is

the boundary of the trajectory domain X𝛤C . From the initial state 𝑥0 = ( 12 ,
1
2 ,

1
2 )

𝑇 , the open-loop system trajectory, i.e. for 𝑢 = 0,
starting from it is denoted by the red circle markers (the red line is added to help following the actual trajectory). It is clear that
the uncontrolled system is not finite-time stable with respect to (0, 10,XRC

,X𝛤C ) (see Fig. 1).

8 Note that continuity conditions (4) hold.
8
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By using Theorem 9 we can conclude that the system considered is finite-time stabilizable with respect to (0, 10,XRC
,X𝛤C ), via

the output feedback 𝑢(𝑘) = 𝐾𝑖𝐶𝑖𝑥(𝑘), 𝑥(𝑘) ∈ C𝑖, 𝑖 ∈ I, having the controller gains

𝐾1 = −0.0375, 𝐾2 = −0.0375, 𝐾3 = −0.0392, 𝐾4 = −0.0392, (41a)

𝐾5 = 0.0281, 𝐾6 = 0.0302, 𝐾7 = 0.0300, 𝐾8 = 0.0292. (41b)

In Fig. 1 the green circle markers denote the evolution in 𝑁 = 10 steps of the closed-loop system (23) from the same initial state
when the output feedback controller with the gains given by (41) is applied.

5. Conclusion

Two operative finite-time stabilization results for discrete-time conewise linear systems via static output feedback have been
provided in this paper, depending on the rank of the input or output system matrices, respectively. Without recurring to approximate
methods (BMIs) or to more conservative assumptions (relaxation to the whole state space), the controller design conditions require
the solution of a feasibility problem for a set of LMIs, i.e. of a convex and numerically amenable problem. The stabilization theorems
formulation exploited the FTS outcomes preliminarily derived in the first part of the paper, which adopts matrix cone-copositivity
arguments involving piecewise quadratic functions. Such functions are appropriate if the initial and the trajectories domains can be
modeled as piecewise quadratic domains, as is the case for classical ellipsoidal regions.
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