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Abstract: In cluster analysis one often finds several partitions of a data set using different clustering
methods and algorithms set with a variety of hyperparameters and tunings. The number of clusters
K is one of the most relevant of such hyperparameters. Cluster selection is the task of choosing the
desired partitions. The Bootstrap Quadratic Scoring is a recently introduced method where the cluster
selection is performed by optimizing a score attached to a partition that is based on the quadratic
discriminant function. Previously, we proposed the estimation of this cluster score via bootstrap
resampling and investigated the proposed estimator based on numerical experiments and real data
applications. However, that earlier work did not provide theoretical guarantees. In this paper, we
fill that gap. We study the asymptotic behavior of the scoring method and show that the proposed
estimator converges to well-defined population counterparts.

Keywords: cluster validation; model-selection; method-selection; resampling methods; asymptotic
analysis
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1. Introduction

Clustering remains a fundamental challenge in the analysis of complex datasets.
Researchers frequently apply multiple algorithms with varying configurations, producing
several candidate partitions from which they must choose a final solution. The diversity
in partitioning reflects the inherent ambiguity in defining clusters, especially given the
unsupervised nature of most clustering problems (see [1]). A long-standing challenge
within this context is the selection of the appropriate number of clusters, K, a decision
complicated by the fact that many algorithms also require tuning of hyperparameters that
affect the granularity of the data structure representation. Even at a fixed K, different
hyperparameter choices can lead to different partitions ([2]).

Recent efforts, such as those of Ullmann et al. [3], have sought to categorize different
validation approaches providing a complete overview of what has been done in the litera-
ture. For a comprehensive overview of the problem of cluster validation and selection see
[4]. The central issue is that most clustering methods implicitly pursue particular notions
of what constitutes a “good” cluster, reflecting assumptions about the structure within the
data. Despite this, many new proposals claim universal applicability, suggesting that they
can uncover the “true” clusters, a claim that oversimplifies the reality of unsupervised
analysis. In reality, the existence of “true” groups is often an illusory concept and different
methods prioritize different cluster characteristics. In a previous work [2], we introduced
a novel approach that starts from a different perspective. There, we introduce the notion
of clustering and we propose a method that is designed to retrieve partitions that are
consistent with the target cluster concept. In particular, we design criteria, called quadratic
scores (reviewed in Section 2), that are consistent with clusters generated from the class of
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elliptical-symmetric distributions that includes Gaussian models as a special case. Clusters
of this type form partitions of the data space where the boundaries separating clusters
can be meaningfully obtained based on the quadratic discriminant scores used in classical
Quadratic Discriminant Analysis (QDA). By connecting these quadratic scores criteria to
likelihood-type quantities from the model-based clustering literature (see [5]), we provided
a robust framework for selecting the optimal clustering solution.

In [2], we estimate the quadratic score of clustering solutions, using sample informa-
tion, via an estimation strategy based on bootstrap resampling, a novel proposal that is
validated with an extensive experimental analysis. In this article, we extend the existing
literature by providing a novel theoretical characterization of this cluster selection method-
ology. In particular, we derive asymptotic results showing the consistency of the estimation
procedure. At the same time, it is acknowledged that our consistency results are based on
sufficient conditions that involve assumptions on the unobservable underlying population
distributions. Therefore, the results of this paper should be taken as a characterization
of the statistical environment that would provide theoretical guarantees for a reasonable
cluster selection.

The rest of this paper is organized as follows: Section 2 reviews the hard and smooth
quadratic scores introduced in [2], as well as the bootstrap estimation strategy. Section 3
develops the novel asymptotic results, by first characterizing the asymptotic behavior of
the bootstrap estimation strategy for a generic scoring function, and then, specializing the
results to the hard and smooth scores. Section 4 provides a discussion of the asymptotic
results and, finally, Section 5 concludes the paper.

2. Evaluating Partitions Using the Quadratic Scoring

In this section, we review the scoring method introduced in [2]. The general notation
is as follows. Xn = {xi, i ∈ {1, . . . , n}} indicates the observed sample of size n, where each
observation is a p-dimensional feature vector xi ∈ Rp; Xn is the realization of a random
sample, i.e., Xn = {Xi, i ∈ {1, . . . , n}}, where Xi ∈ Rp is the p-dimensional random vector
of features representing the i-th unit. K indicates the number of groups into which the n
observations are clustered. Group memberships are introduced through the random vector
of 0–1 variables Zi = (Zi1, . . . ZiK)

⊤, where Zik = 1 if the i-th sample point belongs to the
k-th group, and 0 otherwise. For clusters that are meaningfully described by a triplet, θk,
of size, center, and scatter parameters θk = {πk, µk, Σk}, the quadratic score at point x for
cluster k is defined by

qs(x, θk) = log(πk)−
1
2

log(det(Σk))−
1
2
(x− µk)

⊤Σ−1
k (x− µk), (1)

where πk ∈ (0, 1), ∑k πk = 1 is the size of the cluster, and µk ∈ Rp, Σk ∈ Rp×p are the
cluster center and scatter, respectively. The quadratic score qs can be seen as a measure
of how well point x fits into cluster k (higher values being associated with better fit) and,
given clustering θ = {θk, k ∈ {1, . . . , K}}, it defines a quadratic partition of the space

Q(θ) = {Qk(θ), k ∈ {1, . . . , K}}, (2)

where the quadratic region Qk(θ) is the region of the space where the quadratic score for
cluster k is maximal:

Qk(θ) =

{
x ∈ Rp : qs(x, θk) = max

1≤j≤K
qs(x, θj)

}
. (3)

Elliptic-symmetric clusters are well described in terms of parameters θk, and in [2], it
is shown that the quadratic score qs and the associated quadratic partitionQ are optimal to
describe a general class of elliptic-symmetric data generating processes (DGPs) in the sense
that, under any DGP in this class, parametrized at θ, the quadratic partition achieves the
largest probability for points generated from the k-th sub-population to fall within the k-th
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region Qk(θ); any other partition of the space is sub-optimal, achieving a lower probability.
The aforementioned class of elliptic-symmetric DGPs is characterized as follows.

Definition 1 (Quadratic-clustered DGPs). DGPs compatible with elliptic-symmetric clustered
regions of points that are optimally described by quadratic partitions are so characterized: for
k ∈ {1, . . . , K}, P(Zk = 1) = πk and the group-conditional distribution X|Z = k has density

f (x; µk, Σk) = det(Σk)
− 1

2 g
(
(x− µk)

⊤Σ−1
k (x− µk)

)
, (4)

where g(·) is a strictly decreasing function on [0,+∞], µk ∈ Rp is the centrality parameter and
Σk ∈ Rp×p is a positive definite scatter matrix. Moreover, at least one of the following holds

(C1) f (·) is the Gaussian density function (for an appropriate choice of g(·));
(C2) log(πi/πj) = log

(
det(Σi)

1
2 / det(Σj)

1
2

)
.

Remark 1. The group-conditional density (4) belongs to the key class of elliptical-symmetric
distributions (ESDs). The ESD class includes popular models like the Gaussian, the Student-t,
the Laplace, the multivariate logistic, etc. They generate groups of points lying in regions that are
intersections of ellipsoids described by the pairs of centrality-scatter parameters (µk, Σk) and, within
each group, the features are connected via covariance relationships. The generating mechanism is
consistent with data generated from finite mixtures of such elliptically-symmetric families. Outside
the Gaussian case, DGPs are required to produce groups for which there is a balance between size
and generalized variance (see (C1)).

Most often, there is no prior knowledge on viable grouping of the data, which may
also exhibit no clustering structure at all. In practice, it is common to estimate different
clustering structures on the data Xn, compare them on some goodness-of-fit measure, and
select the best ones. Let M be a set indexing clustering solutions, with corresponding
representation in terms of triplets of parameters given by θ(m), for index m ∈ M. Given that
the quadratic partition Q(θ) optimally describes elliptic-symmetric clusters parametrized
at θ, it can be shown that point-wise maximization of the quadratic score qs is achieved
by those clustering solutions that better capture the main clustered regions, allowing us to
define what we call the Hard Score criterion:

Hn(θ
(m)) =

1
n

n

∑
i=1

K(θ(m))

∑
k=1

I
{

xi ∈ Qk(θ
(m))

}
qs
(

xi; θ
(m)
k

)
, (5)

where K(θ(m)) is the number of clusters in the m-th clustering solution, and I{·} is the
indicator function. Comparing θ(m) with θ(m

′), for m, m′ ∈ M, we say that solution θ(m) is
preferred to θ(m

′) if Hn(θ
(m)) > Hn(θ

(m′)), in line with the idea that θ(m) provides a better
description of the elliptic-symmetric clustered regions in the data Xn. Hn(·) attaches hard-
weights (0–1 weight) to each point score qs(·). For situations where a smooth transition
between clusters is desired, ref. [2] introduced the Smooth Quadratic score, defined as

Tn(θ
(m)) =

1
n

n

∑
i=1

K(θ(m))

∑
k=1

τk

(
xi; θ(m)

)
qs
(

xi; θ
(m)
k

)
. (6)

The previous score rests on the same considerations that led to definition (5), but replaces
the indicator function with a smooth weighting scheme, using

τk(xi; θ) =
exp(qs(xi; θk))

∑n
i=1 exp(qs(xi; θk))

.

Other weighting schemes are possible, but the softmax transformation is used as it guaran-
tees some form of optimality for Gaussian clusters. Solutions achieving a higher smooth
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score are preferred. With respect to (5), using (6) tends to select simpler clustering solu-
tions in cases of strong cluster overlaps, preferring solutions that cluster together highly
overlapped groups of data points. A full account of the properties of the hard and smooth
scores and a comparison between them is provided in [2].

Remark 2. When clusters are generated by the ESD group-conditional model f (·), by selecting a
partition described by a θ(m) maximizing (5) or (6), it is shown that one finds an optimal quadratic
partition. In practice, for real data applications, one cannot expect the previous assumption to hold
precisely. In fact, our work [2], based on a massive numerical experiment, showed that the criteria
proposed work when: (i) clusters are well-described by size-centrality-scatter parameters θ, and
(ii) whenever the clusters can be reasonably separated by linear and quadratic boundaries.

Bootstrap Resampling of the Scores

In the previous section, we assumed the existence of a set of clustering solutions,
indexed by setM, from which an optimal solution needs to be selected, glossing over the
origin of the set itself. In fact, such a set needs to be estimated in practice. The usual approach
is to identify a pool of clustering approaches, and then define settings and hyperparameters
for each of them. A clustering approach, its hyperparameters, and its algorithmic controls
define a clustering method fitting the data, thereby producing a clustering solution. With a
slight abuse of notation, we use the setM to index the clustering methods to be fit on the
data. For each clustering solution, we denote its representation in terms of triplet parameters

as θ̂
(m)
n =

{
θ̂
(m)
n,k , k ∈ {1, . . . , K(m)}

}
, where K(m) is the number of clusters implied by method

m ∈M, and the subscript n highlights the dependence on sample data and its size.
Once the set of clustering solutions is estimated, we can then use criterion (5) or (6) to

pick the desired solution. Unfortunately, this strategy is likely to return an over-optimistic
assessment of the quality of fit. Estimates of (5) or (6) will tend to favor more complex
clustering solutions as these have higher degrees of freedom to adapt to the data better.
However, overly complex solutions might capture not only patterns from the unknown
data-generating process but also artifacts of the sampling process. In this case, the selection
problem is affected by the bias–variance trade-off that arises with clustering methods of
different complexity, and can not be decided using the same set of data both to fit the
clustering solution and to score it. This fact is well known in the supervised learning
context and is well documented in [2].

More formally, let us generalize our notation by calling s(x, θ) the point-wise score,
that is the score attached to the point x based on the solution described by θ. Let us rewrite
the score attached to the partition as

hard score: s(x, θ) =
K(θ)

∑
k=1

I{x ∈ Qk(θ)}qs(x, θk), Sn(Xn, θ) =
1
n

n

∑
i=1

s(xi, θ);

smooth score: s(x, θ) =
K(θ)

∑
k=1

τk(x, θ)qs(x, θk), Sn(Xn, θ) =
1
n

n

∑
i=1

s(xi, θ).

To ease the notation, Sn(·) identifies both the hard and the smooth score depending on the
weighting scheme in the point-wise score s(·). When it is important to distinguish the two
types of score, Sn(·) will be denoted specifically as Hn(·) (hard type) or Tn(·) (smooth type).
Further, fixing method m ∈ M, let us write as θ̂(Xn) = θ̂n the clustering solution obtained
fitting method m on the sample data Xn. The naive strategy described above that results in
over-estimating the performance of solution θ̂n consists of computing the score

Sn
(
Xn, θ̂(Xn)

)
=

1
n

n

∑
i=1

s
(
xi, θ̂(Xn)

)
, (7)

where it is evident that the same data source is used both to estimate the clustering solution
and to evaluate the score.
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In the spirit of Akaike’s seminal work [6], in order to avoid the over-fitting bias
described above, one would like to marginalize out the randomness of the clustering
solutions. Indeed, assuming that X ∼ F, and θ̂n ∼ G, for some distribution G that
represents the randomness of the clustering output, the target quantity of interest, at the
population level, is W = EG EF[s(X, θ̂n)]. W is the expectation of the average score s over
all possible realization of θ̂n ∼ G. However, in large samples, if θ̂n → θ0 for n→ ∞, W will
be evaluated at the limit clustering θ0.

Estimating W with in-sample quantities would require the observation of multiple
independent samples from F and G. As this is not possible in practice, we propose to
approximate it using resampling strategies. Here, we focus on the empirical bootstrap
([7]). Let Xn be the observed data and Fn be the corresponding empirical cumulative
distribution function (ECDF) of the sample. Denoting with X(b)

n a bootstrap sample from
Fn, we propose to use bootstrap resamples to approximate the outer expectation over G,
and the distribution Fn to approximate for the inner expectation over F. That is, we propose
to estimate W with the quantity

1
B

B

∑
b=1

S
(
Xn, θ̂(X(b)

n )
)
=

1
B

B

∑
b=1

1
n

n

∑
i=1

s
(

xi, θ̂
(b)
n

)
, (8)

where θ̂
(b)
n represents the clustering solution fitted on the b-th sample (to be precise, the

clustering solution is obtained by fitting method m ∈ M, but we suppress the dependence
from m in the notation), and its randomness may arise both due sampling variability and
by the algorithmic procedure that estimates the clustering solution. Under appropriate
regularity conditions, (8) can be used to estimate W in large samples:

lim
n,B→∞

1
B

B

∑
b=1

S
(
Xn, θ̂

(b)
n

)
= W; (9)

in the case of a degenerate G, we are also interested in confidence intervals EF[s(X, θ0)].
The exact procedure introduced in [2] to estimate (9) is described in Algorithm 1.

Algorithm 1 Bootstrap Scoring (BQH, BQS)

Input: observed sample Xn (with ecdf Fn), α ∈ (0, 1); clustering method m ∈ M.
Output: W̃n, L̃n, Ũn.

(to ease notation, dependence on m is dropped and reintroduced in Step 3.1)

for b ∈ {1, . . . , B} do

(Step 1.1) X(b)
n ←

{
x(b)i ; i ∈ {1, . . . , n}

}
iid∼ Fn

(Step 1.2) θ̂
(b) ← fit method m on X(b)

n

(Step 1.3) S(b)
n ← Sn(Xn, θ̂

(b)
) = n−1 ∑n

i=1 s
(

xi; θ̂
(b)
)

end for
(Step 2) W̃n ← B−1 ∑B

b=1 S(b)
n

(Step 3) Let R(b)
n =

√
n
(

S(b)
n − W̃n

)
(Step 3.1) Compute

L̃(m)
n ← inf

t

{
t :

1
B

B

∑
b=1

I
{

R(b)
n ≤ t

}
≥ α

2

}
; Ũ(m)

n ← inf
t

{
t :

1
B

B

∑
b=1

I
{

R(b)
n ≤ t

}
≥ 1− α

2

}

BQH = arg maxm∈M

{
L̃n

}
when s(·) corresponds to the hard quadratic score

BQS = arg maxm∈M

{
L̃n

}
when s(·) corresponds to the smooth quadratic score
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Using Algorithm 1, multiple clustering methods m ∈M can be scored, and the solution
achieving the highest bootstrap lower confidence interval is selected. The BQH and BQS
validation criteria are defined according to whether (5) or (6) is used in place of scoring criterion
S. Both prove to be effective in solving the selection problem, with the smooth score having an
edge over the hard score in cases of strong overlap of (some of) the clusters.

3. Theoretical Analysis

In this section, we analyze the bootstrap estimator presented in Algorithm 1. We use
the same notation as in [8] to represent probability measures. In this notation, the origi-
nal probability measure is denoted as P, and the original probability space is (Ω,F , P).
This is the probability measure governing the behavior of the data-generating process.
The probability measure induced by the bootstrap algorithm is denoted as P∗. To be
precise, P∗n,ω depends upon a realization ω ∈ Ω and on the sample size n; however, we
are going to omit this in our notation. Dependency on n will be made explicit in the
notation of quantities estimated on bootstrap resamples (e.g., θ̂∗n). In this notation, a boot-
strap statistic T∗n converges in “probability–P∗, almost sure–P” to T if, for any ϵ > 0, there
exists F ∈ F such that P(F) = 1 and for all ω ∈ F: limn→∞ P∗(∥T∗n − T∥ > ϵ) = 0. Sim-
ilarly, T∗n converges in “probability–P∗, probability–P” to T if, for any ϵ > 0 and δ > 0:
limn→∞ P(P∗(∥T∗n − T∥ > ϵ) > δ) = 0. Using subsequences arguments (e.g., [9]), “conver-
gence in probability–P∗, probability–P” means that for any subsequence {n′}, there exists a
further subsequence {n′′}where the convergence holds in “probability–P∗, almost sure–P”.
Convergence of T∗n to T in distribution–P∗, probability–P means that T∗n converges weakly
to the law of T on a set with probability P converging to 1.

3.1. Analysis of the Resampling Algorithm

In this section, we present the main theoretical results on the bootstrap resampling
procedure illustrated in Algorithm 1. We note that, in Algorithm 1, step 3, the quantities
R(b)

n are centered with respect to a bootstrap average

W̃n =
1
B

B

∑
b=1

Sn

(
Xn, θ̂

(b)
n

)
=

1
B

B

∑
b=1

∑
xi∈Xn

s
(

xi, θ̂
(b)
n

)
, (10)

R(b)
n =

√
n
(

S(b)
n − W̃n

)
, (11)

where we emphasized the dependence on sample size n of the estimated clustering solution
and dropped the dependence from a specific method m ∈ M, which is assumed to be fixed.
The scoring function s is a generic one, and in the application above coincides either with
the hard or smooth score. The centering used in (11) is different to what is typically done in
standard bootstrap theory, where the centering value is the in-sample counterpart of the
bootstrapped statistic ([10]).

In order to establish asymptotic properties for (10) and (11), we need two preliminary
results. The first establishes the convergence of each term of the sum in (10). The second
shows the convergence in the distribution of (11).

Proposition 1. Let (Ω,F , P) be a probability space, and let X be a random variable with distri-
bution F on this space, with X(ω) ∈ Rp for some finite integer p. Let X1(ω), X2(ω), . . . be an
infinite sequence of independent and identically distributed random variables; Xn = {X1, . . . Xn}
being the first n terms. Let Fn be the ECDF of Xn, and X∗l be a bootstrap sample from Xn, of size
l. Let Θ ⊆ Rd, for some finite integer d; Sn : ∏n

i=1 Rp ×Θ → R random functions; S : Θ → R
an almost sure continuous random function over Θ. Let θ̂n = θ̂(Xn) and θ̂

∗
l = θ̂(X∗l ) be fitted

clustering solutions, with θ0, θ̂n, θ̂
∗
l ∈ Rd. Assume that:

(A1) for all l, n ∈ N, P(P∗(θ̂∗l ∈ Θ)) = 1, P(θ̂n ∈ Θ) = 1 and P(θ0 ∈ Θ) = 1.
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(A2) (Convergence of the estimator in conditional probability) for any ϵ > 0, δ > 0 as n, l → ∞:

lim
n→∞

P
{
∥θ̂n − θ0∥ > ϵ

}
= 0,

lim
n,l→∞

P
{

P∗
{
∥θ̂∗l − θ̂n∥ > ϵ

}
> δ

}
= 0.

(A3) (Uniform convergence of Sn) for any ϵ > 0:

lim
n→∞

P
{

sup
θ∈Θ
|Sn(Xn, θ)− S(θ)| > ϵ

}
= 0.

Then, for any ϵ > 0, δ > 0:

lim
n,l→∞

P
{

P∗
{
|Sn(Xn, θ̂

∗
l )− S(θ0)| > ϵ

}
> δ

}
= 0, (12)

which is a convergence in probability–P∗, probability–P.

Remark 3. In general, the rate at which l goes to ∞ is determined as a function of n and depends
by the particular result applied to show validity of assumption (A2). A typical choice is l = n.

Remark 4. Assumption (A2) can be replaced by any result stating the convergence of the boot-
strapped quantity θ̂

∗
l , as for example, for any ϵ > 0, δ > 0,

lim
n,l→∞

P{P∗{∥θ̂∗l − θ∥ > ϵ} > δ} = 0.

Now, we move to the second result, showing the convergence in distribution of the
quantity (11). This convergence justifies the confidence intervals estimated in Algorithm 1,
Step 3.1. The proof requires additional assumptions and uses the delta method applied to
the root (11).

Proposition 2. Let assumptions (A1), (A2), and (A3) be satisfied, and assume for convenience that
l = n. Additionally, assume that:

(A4) (bootstrap estimator’s convergence in distribution): for any ϵ > 0:

lim
n→∞

P
{

sup
t

∣∣∣∣P∗{an
(
θ̂
∗
n − θ̂n

)
≤ t
}
− P

{
an
(
θ̂n − θ0

)
≤ t
}∣∣∣∣ > ϵ

}
= 0, (13)

for some rate an, an → ∞ as n→ ∞; assuming an(θ̂n − θ0) converges in distribution to a
continuous distribution function, T , and call T a random element such that T ∼ T .

(A5) (uniform convergence of the first derivative of Sn over Θ): Sn(Xn, θ) is twice differentiable
in θ with uniformly converging first derivatives over Θ, in probability–P. That is, assume
that for any ϵ > 0:

lim
n→∞

P
{

sup
θ∈Θ
∥∇θSn(X, θ)−∇θS(θ)∥ > ϵ

}
= 0.

Then, as n→ ∞, in distribution–P∗, probability–P:

an

(
Sn

(
Xn, θ̂

(b)∗
n

)
− 1

B

B

∑
b=1

Sn

(
Xn, θ̂

(b)∗
n

))
d−→ ∇θS(θ0)

TT +∇θS(θ0)
T E T, (14)



Mathematics 2024, 12, 3417 8 of 20

or, if E T = 0,

an

(
Sn

(
Xn, θ̂

(b)∗
n

)
− 1

B

B

∑
b=1

Sn

(
Xn, θ̂

(b)∗
n

))
d−→ ∇θS(θ0)

TT. (15)

3.2. Properties of the Quadratic Scoring Function

Proposition 1 and Proposition 2 provide conditions that characterize the asymptotic
behavior of the resampling strategy proposed in Algorithm 1, for a generic function S.
We now focus on providing results for the hard and smooth scoring functions (5) and (6),
which we will use later to show that some of the assumptions (A1) to (A5) hold for this
particular choice of S.

The following results for the hard (5) and smooth (6) scores are based on an equovalent
formulation in terms of Gaussian densities. The next result establishes the equivalence with
Gaussian densities up to a constant term. Proofs of statements are deferred to Appendix A.

Proposition 3. Consider m, m′ ∈ M, and observed data Xn; define the scores hn and tn as

hn

(
θ(m)

)
:=

1
n ∑

xi∈Xn

K(m)

∑
k=1

I
{

k = arg max
k

{
π
(m)
k ϕk(xi; m)

}}
log
(

π
(m)
k ϕk(xi; m)

)
(16)

tn

(
θ(m)

)
:=

1
n ∑

xi∈Xn

K(m)

∑
k=1

π
(m)
k ϕk(xi; m)

∑
K(m)
k=1 π

(m)
k ϕk(xi; m)

log
(

π
(m)
k ϕk(x; m)

)
, (17)

where ϕk(·, m) is a p-dimensional Gaussian density parametrized at θ(m):

ϕk(x, m) = (2π)−p/2 det
(

Σ
(m)
k

)−1/2
exp

{
−1

2

(
x− µ

(m)
k

)T
Σ−1

k

(
x− µ

(m)
k

)}
.

Then, referring to (5) and (6), for any m, m′ ∈ M,

Hn

(
θ(m)

)
> Hn

(
θ(m

′)
)
⇐⇒ hn

(
θ(m)

)
> hn

(
θ(m

′)
)

Tn

(
θ(m)

)
> Tn

(
θ(m

′)
)
⇐⇒ tn

(
θ(m)

)
> tn

(
θ(m

′)
)

.

With a slight abuse of notation, in the following, we will indicate with h and t (without
subscript) the generic term of the sums in in hn and tn, respectively, (compare with (16)
and (17)).

h(x, θ) =
K

∑
k=1

I
{

k = arg max
k
{πkϕk(x)}

}
log(πkϕk(x)), (18)

t(x, θ) =
K

∑
k=1

πkϕk(x)

∑K
k=1 πkϕk(x)

log(πkϕk(x)). (19)

The following propositions characterize some properties of hn and tn.

Proposition 4 (continuity). h(x, θ) and t(x, θ) defined in (18) and (19) are continuous both in x
and θ.

The proof is trivial, h and t being composition of continuous functions in both argu-
ment. It follows immediately that both hn and tn are continuous.

Proposition 5 (Bounded from above). If πk ∈ (0, 1) and det Σk > 0 for all k ∈ {1, . . . , K},
then h(x, θ) and t(x, θ) are bounded from above: ∃M ∈ R : h(x, θ) < M for any x ∈ Rp

(analogously for t).
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Now, we show the existence of the second moment of h and t, with respect to random
variable X, for all possible values of θ ∈ Θ. These are needed to establish uniform
convergence required by assumption (A3), on which Propositions 1 and 2 heavily rely.
This is an essential regularity condition, and amounts to shape the degree of smoothness
required for the scoring function used in the resampling scheme.

Proposition 6 (Second moment of t). Assume the following hold, for every θ ∈ Θ

(B1) X is a p-valued random variable with X ∼ F, where F is a continuous distribution function
such that the fourth moment exists: E(XiXjXlXm) < ∞, for any i, j, l, m ∈ {1, . . . , p};

(B2) πk > 0 for every k and ∑K
k=1 πk = 1;

(B3) ∥µk∥2 ≤ M for some large M for every k;
(B4) Σk is non singular for every k.

Then, the first two moments of t with respect to F exist and are finite:

E sup
θ∈Θ

(
t(X, θ)2

)
< ∞.

Proposition 7 (Second moment of h). Assume (B1), (B2), (B3), (B4) hold. Then, the first two
moments of h under F exist and are finite:

E sup
θ∈Θ

(
h(X, θ)2

)
< ∞.

Proposition 8 (Bounded in probability). Let (B1) to (B4) hold. Then both hm(θ) and tn(θ) are
bounded in probability: for any ϵ > 0, ∃M ∈ R : P(|hn(θ)| > Mϵ) ≤ ϵ (analogously for tn).

The next proposition is similar to the two above and it is required to show the validity
of assumption (A5), but demands for stronger assumptions on the data distribution. This is
needed to ensure regularity conditions to apply delta method in Proposition 2. This is
shown for smooth scoring s only.

Proposition 9 (Existence of ∇θt second moment). Let assumptions (B2) to (B4) hold. Let as-
sumption (B1) be strengthened by the following:

(B1*) X is p-dimensional random variable, X ∼ F, and F is such that

E
(
Xi1 Xi2 Xi3 Xi4 Xi5 Xi6 Xi7 Xi8

)
< ∞; ∀i1, i2, i3, i4, i5, i6, i7, i8 ∈ {1, . . . , p}

Then:
E
(

sup
θ∈Θ
∥∇θs(X, θ)∥2

)
< ∞. (20)

3.3. Consistency of the Hard and Smooth Scores

In this section, we bring together results provided in Sections 3.1 and 3.2 to show
conditions under which (10) consistently estimates its population counterpart and the
validity of confidence intervals based on (11).

Assuming Xn is a sequence of i.i.d. random variables from F and that (A1), (A2) and
(B1) to (B4) hold. These assumptions ensure that s(X, θ) (where s is either h or t) is a
continuous function in both arguments, Θ is a compact set, and E(supθ∈Θ s(X, θ)2) < ∞
(by Propositions 6 and 7). Then, by a straightforward application of ([11] Theorem 2.7.5),
we have that, for any ϵ > 0:

P
{

lim
n→∞

sup
θ∈Θ

∣∣∣ 1
n

n

∑
i=1

s(Xi, θ) − E s(X, θ)
∣∣∣ > ϵ

}
= P

{
lim

n→∞
sup
θ∈Θ

∣∣∣Sn(Xn, θ) − S(θ)
∣∣∣ > ϵ

}
= 0, (21)
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which is an almost sure uniform convergence of Sn over Θ to S, and is a stronger condition
than that required by assumption (A3). Hence, if Xn is a sequence of i.i.d. random variables
from F and (A1), (A2), (B1), (B2), (B3) and (B4) hold, then (A3) is implied by (21), allowing
to apply Proposition 1, which yields the convergence in probability–P∗, probability–P for
Sn: for any ϵ > 0, δ > 0, and any b = 1, . . . , B:

lim
n→∞

P
{

P∗
{
|Sn(Xn, θ̂

∗(b)
n )− S(θ)| > ϵ

}
> δ

}
= 0.

Thus, applying the law of large numbers to the bootstrap probability–P∗, we have the following:

lim
B→∞

lim
n→∞

1
B

B

∑
b=1

S∗(b)n → E S(θ) ≡ Eθ EX s(X, θ), (22)

where the convergence happens in probability–P∗, in probability–P. This result states that
we can consistently estimate (9) with the bootstrap strategy in Algorithm 1. Next, we show
the adequacy of the confidence interval.

Now, we turn to the validity of confidence interval based on (11). The following
discussion consider s to be specified as the smooth score (17). Assume that Xn is a sequence
of i.i.d. random variables from F and that (A1), (A2), (A4), (B1*), (B2), (B3), and (B4) hold.
Using the argument made to derive (21), these assumptions imply (A3), as (B1*) implies
(B1). Moreover, using the same argument, they also imply (A5) by using Proposition 9
in place of Proposition 6. Thus, we can apply Proposition 2 together with ([12] Lemma
23.3), yielding the consistency of the bootstrapped quantiles for the distribution ∇θS(θ)T
(possibly shifted by a bias term). We denote the quantiles with qα. More precisely, L∗n and
U∗n , as defined in Algorithm 1, converges to L and U, where:

L = inf
t

{
t : P(∇θS(θ)T ≤ t) ≥ α

2

}
+∇θS(θ)E T = q α

2
+ constant;

U = inf
t

{
t : P(∇θS(θ)T ≤ t) ≥ 1− α

2

}
+∇θS(θ)E T = q1− α

2
+ constant;

the convergence occurs as B→ ∞, n→ ∞, in probability–P∗, in probability–P.
Now, for simplicity, we argue along subsequences n, where the convergence in

Proposition 2 can be taken to hold in distribution–P∗, almost sure–P Thus, with probability–
P = 1, as B, n→ ∞:

P∗
{

Sn(Xn, θ) ≥ S∗n −
L∗n
an

}
= P∗

{
an

( 1
B

B

∑
b=1

S∗(b)n − Sn(Xn, θ)
)
≤ L∗n

}
=

P∗
{

an

( 1
B

B

∑
b=1

S∗(b)n − Sn(Xn, θ̂n)
)
+ an

(
Sn(Xn, θ̂n)− Sn(Xn, θ)

)
≤ L∗n

} p∗−→

P
{(
∇θS(θ)E T +∇θS(θ)T

)
≤ ∇θS(θ)E T + q α

2

}
= P

{
∇θS(θ)T ≤ q α

2

}
=

α

2
,

where we used
p∗−→ to indicate that the convergence is in probability–P∗, and is motivated

by an application of Slutsky’s theorem to the bootstrap probability P∗. The same reasoning
applies to U∗n , therefore Sn(Xn, θ):

P∗
{

S∗n −
U∗n
an
≤ Sn(Xn, θ) ≤ S∗n −

L∗n
an

}
→ 1− α,

where the convergence is in probability–P∗, probability–P (as B, n→ ∞).

4. Discussion

In Section 3.1, we analyzed the asymptotic behavior of the bootstrap strategy proposed
in Algorithm 1 for a generic scoring function, and characterized assumptions (A1) to (A5)
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that are required for asymptotic convergence. Then, in Section 3.2, we derived some useful
properties for the hard and smooth scores, and defined under which conditions of the
data-generating process these hold. Conditions (B1) to (B4), essentially require the existence
of moments of the distribution of X, and some restrictions for the set Θ containing the
solutions θ(m), that roughly amount to requiring that the clustering method under study
does not output singular clusters, and that none of the K(m) cluster is returned empty.
Finally, in Section 3.3, we linked results in Sections 3.1 and 3.2, showing that (i) for the hard
and smooth quadratic scoring functions some of the assumptions required by Proposition 1
and Proposition 2 hold under some regularity conditions on F, and reasonable assumptions
on the space Θ; and (ii) the bootstrap strategy proposed in Algorithm 1 can consistently
estimate the asymptotic targets, by applying Propositions 1 and 2.

Unfortunately, no further insight is available for assumptions (A2) and (A4), although
they play a key role in the proof of the two propositions. These assumptions essentially
require that the clustering method behave smoothly, ensuring convergence of both in-
sample estimates, θ̂n(m), and their bootstrap counterparts, θ̂

∗
n(m), to well-defined values,

with the latter accurately approximating the former. Andrews [13] shows that, when θ̂n
is an argmax functional (such as an MLE) and F has sufficient smoothness beyond the
second order, these conditions are satisfied. However, verifying such conditions is generally
intractable, except in basic cases, which are often of limited interest for clustering analysis.

Even if possible, finding sufficient conditions for Propositions 1 and 2 may still be
insufficient in practical clustering scenarios, as in some cases the functional that maps
observations into a cluster is hard to frame into a well-understood mathematical object.
For example, this is the case for k-means clustering: while θ̂n(m) can theoretically be
represented as a maximum likelihood estimator [14], in practice, solutions are obtained
using heuristic algorithms (like Lloyd’s), which adds a further level of complication.

This suggests that experimental analysis might be a practical way to understand the
bootstrap behavior of θ̂n(m) in applied clustering settings. For instance, O’Hagan et al. [15]
show empirically that with roughly balanced clusters, the bootstrap estimated parameters
precisely estimate the true parameters for Gaussian mixture models and that bootstrap
confidence intervals achieve good coverage, close to the nominal one.

5. Conclusions

In this work, we reviewed the bootstrap quadratic hard (BQH) and smooth (BQS)
scores introduced in [2]. These are validation indexes that adapt ideas from Quadratic
Discriminant Analysis (QDA), combined with resampling schemes, to the problem of
model selection in cluster analysis, and target clustering solutions that optimally represent
a well-defined concept of elliptic-symmetric clusters.

In an extensive experimental analysis, using both simulated and real data sets in small
sample sizes settings, and considering a wide range of clustering methods, the BQH and
BQS criteria proved to achieve state-of-the-art performance, often providing better results
than recognized competitors from the literature. However, a formal investigation of their
asymptotic behavior was not at that time pursued.

Our contribution in this work is to provide a theoretical characterization of the asymp-
totic behavior of the bootstrap estimation strategy upon which BQH and BQS are based.
We do so by first defining the set of assumptions under which the bootstrap estimation
strategy can be expected to produce scores that are asymptotically consistent and then
showing that some of these assumptions are verified for the hard and smooth scores. In do-
ing this, we also derive some formal properties for the two quadratic scoring functions and
further define conditions for the data-generating process that ensure these hold.

Overall, this allows us not only to characterize the limit quantity estimated by the
BQH and BQS indexes but also to define the statistical framework in which these scores
can be expected to produce asymptotically consistent results. Unfortunately, the clustering
problem is a very complex one, and it is often very difficult to formally assess properties of
the clustering method under study against all of the assumptions required for BQH and
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BQS consistency. However, in most cases, it is possible to investigate the validity of these
hypotheses through experimental studies, and the theoretical characterization we provide
can help the researcher orient their or her investigation.
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Appendix A. Proofs

Proof of Proposition 1. First, note that convergence of θ̂
∗
l to θ0 in conditional probability

P∗ follows from assumption (A2). Indeed:

P
{

P∗
{
∥θ̂∗l − θ0∥ > 2ϵ

}
> δ

}
≤ P

{
P∗
{
∥θ̂∗l − θ̂n∥+ ∥θ̂n − θ0∥ > 2ϵ

}
> δ

}
,

since the event ∥θ̂∗l − θ̂n∥+ ∥θ̂n − θ0∥ > ϵ contains the event ∥θ̂∗l − θ0∥ > ϵ for any value
of ϵ. Now, due to the convergence of θ̂n to θ0, for any subsequence {n′}, we can find a
further subsequence {n′′} where the convergence happens almost surely. Since the latter is
true for any sequence, consider directly the almost sure argument. As n grows, the term
∥θ̂n − θ0∥ can be made arbitrarily small, for example, no bigger than ϵ. Hence, for some
integer n̄, for n > n̄, we have:

P
{

P∗
{
∥θ̂∗l − θ0∥ > 2ϵ

}
> δ

}
≤ P

{
P∗
{
∥θ̂∗l − θ̂n∥+ ∥θ̂n − θ0∥ > 2ϵ

}
> δ

}
= P

{
P∗
{
∥θ̂∗l − θ̂n∥ > 2ϵ− ∥θ̂n − θ0∥

}
> δ

}
≤ P

{
P∗
{
∥θ̂∗l − θ̂n∥ > ϵ

}
> δ

}
.

We note that the term ∥θ̂n − θ0∥ is constant when considering the probability P∗. Moreover,
the last inequality is justified by the fact that the set ∥θ̂∗l − θ̂n∥ > ϵ contains the set
∥θ̂∗l − θ̂n∥ > ϵ′ if ϵ < ϵ′. The last term of the inequality above goes to 0 by assumption if
n, l → ∞. So, we have that, for any ϵ > 0:

lim
n,l→∞

P
{

P∗
{
∥θ̂∗l − θ0∥ > ϵ

}
> δ

}
= 0, (A1)

which is a convergence in probability–P, probability–P∗.
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For the remaining part of the proof, consider the following chain of inequalities:

P
{

P∗
{
|Sn(Xn, θ̂

∗
l )− S(θ0)| > ϵ

}
> δ

}
≤

P
{

P∗
{
|Sn(Xn, θ̂

∗
l )− S(θ̂l

∗
)|+ |S(θ̂∗l )− S(θ0)| > ϵ

}
> δ

}
≤

P
{

P∗
{

sup
θ∈Θ
|Sn(Xn, θ)− S(θ)|+ |S(θ̂∗l )− S(θ0)| > ϵ

}
> δ

}
w.p.1,

where the last inequality holds with probability 1 due to assumption (A1), which en-
sures θ0, θ̂n, and θ̂

∗
l are in Θ with probability 1. Now, consider any subsequence {n′}.

For this sequence, there is a further subsequence, for example,
{

n′′1
}

, such that assumption
(A3) holds almost sure–P (e.g., [9] Theorem 20.5). This implies that there is an integer
n̄′1 such that for any ϵ′ > 0, supθ∈Θ|Sn(Xn, θ)− S(θ)| ≤ ϵ′ if n > n̄′1 but for a null set
N2. For the sequence

{
n′′1
}

, it is possible to find a further subsequence, {n′′2 } (Subse-
quence {n′′2 }might possibly coincide with

{
n′′1
}

, and its existence is ensured by the same
argument that holds for sequences {n′} and

{
n′′1
}

), such that the convergence in (A1)
holds in probability–P∗, almost surely–P. That is, there is a null set N3 such that for
ω ∈ Ω\N3, and any ϵ > 0: limn,l→∞ P∗(∥θ̂∗l − θ0∥ > ϵ) → 0. Now, consider the set
N1 =

{⋃
l
⋃

n N∗1,l,n
}⋃ {⋃

n N′1,n
}⋃

N′′1 , where N∗1,l,n, N′1,n and N′′1 are the null sets where

assumption (A1) fails to hold for θ̂
∗
l , θn and θ0, respectively. Being the countable union of

null sets, N1 ∈ F and is null. Let N4 be the null set where S(·) fails to be continuous, and
let N = N1

⋃
N2
⋃

N3
⋃

N4. N is the countable union of null sets in F , thus, it is a null set,
N ∈ F and P(Ω\N) = 1. For ω ∈ Ω\N, and n, l > n̄′, we have:

P∗
{

sup
θ∈Θ
|Sn(Xn, θ)− S(θ)|+ |S(θ̂∗l )− S(θ0)| > ϵ

}
=

P∗
{
|S(θ̂∗l )− S(θ0)| > ϵ− sup

θ∈Θ
|Sn(Xn, θ)− S(θ)|

}
≤

P∗
{
|S(θ̂∗l )− S(θ0)| > ϵ− ϵ′

}
.

By the continuity of S and the convergence of θ̂
∗
l → θ0 in probability–P∗, almost sure–P

as n, l → ∞, the last term goes to 0. Thus, the term Sn(Xn, θ̂
∗
l )→ S(θ0) in probability–P∗,

almost surely–P for the subsequence {n′}. Since this argument holds for any subse-
quence {n′}, this implies that the convergence Sn(Xn, θ̂

∗
l ) → S(θ0) is in probability–P∗,

probability–P or equivalently:

lim
n,l→∞

P
{

P∗
{
|Sn(Xn, θ̂

∗
l )− S(θ0)| > ϵ

}
> δ

}
= 0

Proof of Proposition 2. The requirement in assumption (A4) is equivalent to the following
([12] Ch. 23):

lim
n→∞

P
{

an
(
θ̂n − θ0

)
≤ t
}
= T (t)

lim
n→∞

P
{∣∣∣P∗{an

(
θ̂
∗
n − θ̂n

)
≤ t
}
− T (t)

∣∣∣ > ϵ

}
= 0,

for all t and any ϵ > 0, for some distribution T . That is an
(
θ̂n− θ0

)
converges in distribution

to T ∼ T and this can be approximated by the bootstrap distribution of an
(
θ̂
∗
n − θ̂n

)
that

converges in distribution–P∗, probability–P to T ∼ T .
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By arguing along subsequences, we consider the almost sure argument. That is, for
any subsequence {n′}, there is a further subsequence {n′′} where the convergence in (A4),
(A5) are almost sure–P. Then, consider the following:

an

(
Sn

(
Xn, θ̂

∗(b)
n

)
− 1

B

B

∑
b=1

Sn

(
Xn, θ̂

∗(b)
n

))
=

an

(
Sn

(
Xn, θ̂

∗(b)
n

)
− 1

B

B

∑
b=1

Sn

(
Xn, θ̂

∗(b)
n

)
+ Sn

(
Xn, θ̂n

)
− Sn

(
Xn, θ̂n

))
=

an

(
Sn

(
Xn, θ̂

∗(b)
n

)
− Sn

(
Xn, θ̂n

))
− 1

B

B

∑
b=1

an

(
Sn

(
Xn, θ̂

∗(b)
n

)
− Sn

(
Xn, θ̂n

))
. (A2)

Now, consider the expansion of Sn(Xn, θ̂
∗
n) around θ̂n:

Sn(Xn, θ̂
∗
n) = Sn(Xn, θ̂n) +∇θSn(Xn, θ̂n)

T
(θ̂
∗
n − θ̂n) + (θ̂

∗
n − θ̂n)

T
∆θSn(Xn, θ̂n)(θ̂

∗
n − θ̂n) + . . . ,

where ∆θ indicates the matrix of second derivatives of Sn. Rearranging the terms and
multiplying by an yields:

an

(
Sn

(
Xn, θ̂

∗
n

)
− Sn(Xn, θ̂n)

)
= ∇θSn(Xn, θ̂n)

Tan(θ̂
∗
n − θ̂n) + oP∗(an),

where we indicated by oP∗ a term that goes to 0 when n→ ∞, at a rate an in probability–P∗,
probability–P, which follows from assumption (A2). Then, as n → ∞, using (A5) and an
application of Slustky’s theorem:

an

(
Sn(Xn, θ̂

∗
n)− Sn(Xn, θ̂n)

)
= ∇θSn(Xn, θ̂n)

Tan(θ̂
∗
n − θ̂n) + oP∗(an)

d−→ ∇θS(θ0)
TT, (A3)

Letting B → ∞, using the result in (A3), together with the strong law of large numbers
for i.i.d. random variables, the last term in Equation (A2) goes to ∇θS(θ)T E T. Finally,
by an application of Slustky’s theorem to the bootstrap probability P∗ and again (A3), as
B, n→ ∞:

an

(
Sn

(
Xn, θ̂

∗(b)
n

)
− 1

B

B

∑
b=1

Sn

(
Xn, θ̂

∗(b)
n

))
d−→ ∇θS(θ0)

TT +∇θS(θ0)
T E T

in distribution–P∗, almost sure–P.
As a last point, we note that the above argument, which is based on almost sure

convergence in P, is valid for any subsequence {n′}. Thus, for the stated assumptions, the
actual convergence is in distribution–P∗, probability–P.

Proof of Proposition 3. For any p-dimensional point x, and triplet θk, the quadratic score
is defined as

qs(x, θk) = log(πk)−
1
2

log(det(Σk))−
1
2
(x− µk)

TΣ−1
k (x− µk).

Let us denote with ϕk(x) the Gaussian density with parameters θk, evaluated at x, that is

ϕk(x) = ϕ(x, θk) = (2π)−p/2 det(Σ)−1/2 exp
(
−1

2
(x− µk)

TΣ−1
k (x− µK)

)
.

Thus, it follows
qs(x, θk) = log(πkϕk(x)) + c, (A4)

where c = −(p/2) log(2π) is a constant term.
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Now, consider the hard score criterion

Hn(θ) =
1
n

n

∑
i=1

K(θ)

∑
k=1

I{xi ∈ Qk(θ)}qs(xi, θk)

The indicator function weighting for point x is equivalent to

I{x ∈ Qk(θ)} = 1 ⇐⇒ k = arg max
j∈{1,...,K}

qs(x, θj) ⇐⇒ k = arg max
j∈{1,...,K}

{
π
(m)
j ϕj(x)

}
,

where the third implication follows from (A4), c being a constant, and log being a mono-
tonically increasing function. Hence, we can write

Hn(θ) =
1
n

n

∑
i=1

K(θ)

∑
k=1

I{xi ∈ Qk(θ)}qs(xi, θk)

=
1
n

n

∑
i=1

K(θ)

∑
k=1

I
{

k = arg max
k

(πkϕk(x))

}
log(πkϕk(x)) + c̃ = hn(θ) + ch,

where ch is a constant term. Thus, for any two m, m′ ∈ M, it follows

Hn

(
θ(m)

)
> Hn

(
θ(m

′)
)
⇐⇒ hn

(
θ(m)

)
> hn

(
θ(m

′)
)

.

Analogously, for the smooth score

Tn(θ) =
1
n

n

∑
i=1

K(θ)

∑
k=1

τk(xiθ)qs(xi, θk),

consider the equivalence

τk(xi, θ) =
exp qs(x, θk)

∑k exp qs(x, θk)
=

πkϕk(x)ec

∑k πkϕk(x)ec =
πkϕk(x)

∑k πkϕk(x)
.

So that the following equivalence holds

Tn(θ) =
1
n

n

∑
i=1

K(θ)

∑
k=1

τk(xiθ)qs(xi, θk)

=
1
n

n

∑
i=1

K(θ)

∑
k=1

πkϕk(x)
∑k πkϕk(x)

log(πkϕk(x)) + ct,

where ct is a constant term. Then, for any two m, m′ ∈ M

Tn

(
θ(m)

)
> Tn

(
θ(m

′)
)
⇐⇒ tn

(
θ(m)

)
> tn

(
θ(m

′)
)

.

Proof of Proposition 4. t(x, θ) is obviously continuous in both arguments as it is obtained
as the product of continuous functions (see (19)).

Consider sh(x, θ). Discontinuity points might occur when the indicator function
switches from one component to another. Without loss of generality, we treat the case
where K = 2. Consider the following:

h(x, θ) =

{
log(π1ϕ1(x)) if 1 = arg max1,2 πiϕi(x)
log(π2ϕ2(x)) if 2 = arg max1,2 πiϕi(x)

= max{log(π1ϕ1(x)), log(π2ϕ2(x))}.
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Noting that the maximum of continuous functions is itself continuous, the statement follows.

Proof of Proposition 5. We give the proof for t. The proof for h follows by the same
argument, replacing the smooth weight with the indicator weight. For a given number of
K, assume without loss of generality that πk ∈ (0, 1), for any k ∈ {1, . . . , K} (if one of the
πk is equal to 0 we are in a case with K− 1 components; if one of the πk is equal to 1 we are
in the case of K = 1). Moreover, ϕk(x) for finite µk and non-singular Σk is bounded by 0
from below and by ϕk(µk) from above. As a consequence:

πkϕk(x)

∑K
k=1 πkϕk(x)

∈ (0, 1);
K

∑
k=1

πkϕk(x)

∑K
k=1 πkϕk(x)

= 1.

Consider log(πkϕk(x)), this quantity belongs to the interval (−∞, log(πkϕk(µk))). As a
consequence, it is easy to see that:

K

∑
k=1

πkϕk(x)

∑K
k=1 πkϕk(x)

log(πkϕk(x)) ≤
K

∑
k=1

log(πkϕk(x)) ≤
K

∑
k=1

log(πkϕk(µk)) ≤ ∞.

However, it is not bounded from below, as it may happen that as ∥x∥ → ∞, πkϕk(x)
∑K

k=1 πkϕk(x)
> 0

and log(πkϕk(x))→ −∞.

Proof of Proposition 6. Consider a partition of Rp, {Ak}k=1...K, where:

Ai := {x ∈ Rp : log(πiϕi(x)) ≥ log(πkϕk(x)) ∀k ̸= i}; (A5)

Note that due to the continuity of the functions involved, such a partition can always be
found for any value of θ ∈ Θ. Then:

E
(

t(X, θ)2
)
=
∫
Rp

(
K

∑
k=1

πkϕk(x)

∑K
k=1 πkϕk(x)

log(πkϕk(x))

)2

dF(x) ≤

∫
Rp

(
K

∑
k=1

log(πkϕk(x))

)2

dF(x) =
K

∑
i=1

∫
Ai

(
K

∑
k=1

log(πkϕk(x))

)2

dF(x) ≤

K

∑
i=1

∫
Ai

(K log(πiϕi(x)))2dF(x) ≤
K

∑
i=1

∫
Rp
(K log(πiϕi(x)))2dF(x) =

K

∑
i=1

∫
Rp

K2 log(πi)
2dF(x) +

K

∑
i=1

∫
Rp

K2 log(ϕi(x))2dF(x)+

K

∑
i=1

∫
Rp

K22 log(πi) log(ϕi(x))dF(x). (A6)

Note that the inequality passing back from Ai to Rp is due to the positiveness of the
integrand (which is a squared function). Now, we analyze in turn the finiteness of the last
three terms.

Consider the first term. It is constant and clearly finite if and only if we have a finite
number of components K and πi > 0 for each i, which is assumed in (B2).
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The second term can be rewritten more explicitly as:

K

∑
i=1

∫
Rp

K2 log(ϕi(x))2dF(x) = K2
K

∑
i=1

∫
Rp

(
Ci +

−(x− µi)
′Σ−1

i (−x− µi)

2

)2

dF(x)

= K2
K

∑
i=1

C2
i +

K2

4

K

∑
i=1

E
(
X′Σ−1

i X + µ′iΣ
−1
i µi − 2µ′iΣ

−1
i X

)2−

K2
K

∑
i=1

Ci E
(
X′Σ−1

i X + µ′iΣ
−1
i µi − 2µ′iΣ

−1
i X

)
. (A7)

where: Ci = log(2π−d/2|Σi|−1/2). Consider now the second term of the expansion above,
(i) all the terms involving parameters in θ are finite due to assumptions (B3) and (B4); and
(ii) the only term that might trouble the finiteness of this term is the one containing the
random variable X. The term E(X′Σ−1

i X)2 involves computing the expected value of linear
combinations of the components of X up to the fourth power. Let p be the dimension of X.
Define a set of integer vectors I = {(i1, i2, . . . , ip) : 0 ≤ ij ≤ 4, ∑

p
j=1 ij = 4}. Denote with I∗

the set of unique elements of I, and let i∗ denote elements in I∗. Simple algebra shows that
we can arrange the previous term as follows:

(X′Σ−1
i X)2 = ∑

i∗∈I∗
γi∗X

i1
1 Xi2

2 . . . X
ip
d , (A8)

where γi∗ is a finite coefficient depending on i∗. Note that in (A8) at most four distinct
component of X can be present in each summand. Thus, a sufficient condition for (A8) to
be bounded is:

E XiXjXlXm < ∞; ∀i, j, l, m = 1, . . . , p. (A9)

which is assumed in (B1). Summarizing, for the second term in (A7), considering each of
the terms in the brackets: (i) the first term is finite due to (B1); (ii) the second term, does not
depend on X, and (B3) and (B4) ensures it is finite as well; and (iii) the third term requires
boundedness of E(XiXj) to be finite, which is already implied by (B1). The finiteness of the
third term in (A7) follows from that of the second term, due to the less restrictive conditions
on moments required by the former. Analogously, the finiteness of (A7) implies that of the
third term in (A6).

Finally, consider taking the superior over Θ. Since the integrand function is continuous
in θ, and Θ is assumed compact, the superior is equal to the maximum of the integrand
function in θ. Call θ0 the maximizer, then

E
(

sup
θ∈Θ

s(X, θ)2
)
= E

(
s(X, θ0)

2
)
< ∞, (A10)

since the argument above applies to any θ ∈ Θ.

Proof of Proposition 7. Consider a partition of Rp, {Ak}k=1...K, where:

Ak := {x ∈ Rp : log(πkϕk(x)) ≥ log(πiϕi(x)) ∀i ̸= k}. (A11)

Then,

E(h(X, θ)2) =
K

∑
k=1

∫
Ak

log(πkϕk(x))2dF(x) ≤

K

∑
k=1

∫
Ak

log(ϕk(x))2dF(x) =
K

∑
k=1

∫
Ak

(
Ck −

(x− µk)
⊤Σ−1

k (x− µk)

2

)2

dF(x)
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where Ck = −
p
2 log(2π)− 1

2 log(|Σk|). The rest of the proof is identical to that of Proposition 6
(compare with (A6) and (A7)).

Proof of Proposition 8. We give the proof for hn. The proof for tn follows by the same
argument, and both are an immediate consequence of Proposition 7 and Proposition 6.
By Markov’s inequality

P(|hn(θ)| > M) ≤ E(hn(θ))

M
=

∑n
i=1 E(h(Xi, θ))

nM
.

For independent and identically distributed Xi,

∑n
i=1 E(h(Xi, θ))

nM
=

E(h(Xi, θ))

M
.

Proposition 7 ensures E(h(Xi, θ)) exists and is finte. Choosing M = E(h(Xi, θ))/ϵ com-
pletes the proof.

Proof of Proposition 9. For simplicity, we consider the case of diagonal covariance matri-
ces, Σk, k ∈ {1, . . . , K}, where σk,i indicates the i-th diagonal term in the k-th covariance
matrix. This is without loss of generality, since the result can also be shown in the more
general case of positive definite variance matrices. Indeed, the expansion of the derivative
in this latter case includes at most quadratic terms in xi and the argument used does not
change. Consider the typical components of ∇θt(x, θ):

t(x, θ) =
K

∑
k=1

πkϕk(x)
f (x, θ)

log(πkϕk(x)); f (x, θ)
K

∑
k=1

πkϕk(x);

∂

∂πk
t(x, θ) =

ϕk(x)
f (x, θ)

(
log(πkϕk(x)) + 1− t(x, θ)

)
; (A12)

∂

∂µk
t(x, θ) =

πkϕk(x)
f (x, θ)

(
log(πkϕk(x)) + 1− t(x, θ)

)
Σ−1

k (x− µk) (A13)

∂

∂Σk
t(x, θ) =

πkϕk(x)
f (x, θ)

(
log(πkϕk(x)) + 1− t(x, θ)

)(
−1

2
Σ−1

k

(
Ip − (x− µk)(x− µk)

⊤Σ−1
k

))
; (A14)

Note that the above equations are of the form:

πkϕk(x)
f (x, θ)

(
log(πkϕk(x)) + 1− t(x, θ)

)
g(x, θ), (A15)

where g(x, θ) = 1
πk

for Equation (A12); g(x, θ) = Σ−1
k (x− µk) for (A13); and for (A14)

g(x, θ) =

(
−1

2
Σ−1

k

(
Ip − (x− µk)(x− µk)

⊤Σ−1
k

))
.

Now, to bound each term in E ∥∇θt(X, θ)∥2, we need that the term involving higher
moments in X exist finite. Clearly, from (A14), the terms involving higher moments of
X are

E
(

πkϕk(X)

f (X, θ)

(
− t(X, θ)

)(
Σ−1

k XX⊤Σ−1
k

)
ij

)2

, i, j ∈ {1, . . . , p}; (A16)
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However, using the same line of proof in proposition 6, we can expand this further in

E
(

πkϕk(X)

f (X, θ)

(
− t(X, θ)

)(
Σ−1

k XX⊤Σ−1
k

)
ij

)2

≤ E
((

t(X, θ)
)2(

Σ−1
k XX⊤Σ−1

k

)2

ij

)
≤

K

∑
j=1

∫
Rp

K2 log(πj)
2
(

Σ−1
k xx⊤Σ−1

k

)
ij

dF(x)+

K

∑
j=1

∫
Rp

K2 log(ϕj(x))2
(

Σ−1
k xx⊤Σ−1

k

)
ij

dF(x)+

K

∑
j=1

∫
Rp

K22 log(πj) log(ϕj(x))
(

Σ−1
k xx⊤Σ−1

k

)
ij

dF(x),

where the last inequality is motivated by using the sets Ai as in Proposition 6. Using the
same argument of Proposition 6, the term that involves higher moments in term of X is the
third one, and in particular, after expansion (compare with (A7)):

E
((

X⊤Σ−1
k X

)2(
Σ−1

k XX⊤Σ−1
k

)2

ij

)
. (A17)

Up to multiplicative constants, the term (Σ−1
k xx⊤Σ−1

k )2 has elements of type (A9), thus a
sufficient condition to bound the generic element (A17) is

E
(
(Xi1 Xi2 Xi3 Xi4 Xi5 Xi6 Xi7 Xi8)

)
< ∞; ∀i1, i2, i3, i4, i5, i6, i7, i8 ∈ {1, . . . , p}

p being the dimension of X. However, (B1*) ensure this condition is satisfied. Now, this
condition implies that all the terms appearing in ∥∇θs(X, θ)∥2 have a finite expectation.
Similarly, because these terms are a continuous function in θ, Θ is assumed compact, and
by assumptions (B2) to (B4), the argument above is valid for any θ ∈ Θ and by linearity of
the integral, it follows:

E(sup
θ∈Θ
∥∇θs(x, Θ)∥2) ≤ E(∥ sup

θ∈Θ
∇θs(x, Θ)∥2) < ∞.
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