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A B S T R A C T

Efficient and accurate large-scale networks are a fundamental tool in modeling brain areas, to advance our
understanding of neuronal dynamics. However, their implementation faces two key issues: computational
efficiency and heterogeneity. Computational efficiency is achieved using simplified neurons, whereas there are
no practical solutions available to solve the problem of reproducing in a large-scale network the experimentally
observed heterogeneity of the intrinsic properties of neurons. This is important, because the use of identical
nodes in a network can generate artifacts which can hinder an adequate representation of the properties of a
real network.

To this aim, we introduce a mathematical procedure to generate an arbitrary large number of copies of
simplified hippocampal CA1 pyramidal neurons and interneurons models, which exhibit the full range of firing
dynamics observed in these cells — including adapting, non-adapting and bursting. For this purpose, we rely
on a recently published adaptive generalized leaky integrate-and-fire (A-GLIF) modeling approach, leveraging on
its ability to reproduce the rich set of electrophysiological behaviors of these types of neurons under a variety
of different stimulation currents.

The generation procedure is based on a perturbation of model’s parameters related to the initial data,
firing block, and internal dynamics, and suitably validated against experimental data to ensure that the firing
dynamics of any given cell copy remains within the experimental range. A classification procedure confirmed
that the firing behavior of most of the pyramidal/interneuron copies was consistent with the experimental
data. This approach allows to obtain heterogeneous copies with mathematically controlled firing properties. A
full set of heterogeneous neurons composing the CA1 region of a rat hippocampus (approximately 1.2 million
neurons), are provided in a database freely available in the live paper section of the EBRAINS platform.

By adapting the underlying A-GLIF framework, it will be possible to extend the numerical approach
presented here to create, in a mathematically controlled manner, an arbitrarily large number of non-identical
copies of cell populations with firing properties related to other brain areas.
1. Introduction

Computational models of multiple brain areas provide an invaluable
tool to make significant advances to understand how a brain works,
from cognitive functions and dysfunctions to digital twin implementa-
tions.

Several techniques have been implemented for these purposes. One
of them is to consider the neural dynamics collectively through a
mean-field approach, to obtain dimensionality reduction [1–4]. An-
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other well-established strategy relies on the construction of large-scale
networks linking the dynamics of individual neurons (e.g. using a
morphologically and biophysically accurate implementation [5–7],
LIF models [8,9] or the Izhikevich model [10,11]). To obtain a solid
representation of a mean-field reduction it is necessary to start from
a detailed understanding not only of individual neuron dynamics but
also of the network to which they belong [12]. Efficient and accurate
large-scale networks hence represent an essential tool to study neural
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dynamics. However, in dealing with such structures, two crucial issues
arise: computational efficiency and heterogeneity.

Computational efficiency is required to ameliorate the current tech-
nical limitations of supercomputer systems, especially in terms of en-
ergy, computational, and memory requirements. From this point of
view, neuron models (and their networks) that achieve a good com-
promise between accuracy and computational efficiency are the gener-
alized leaky integrate-and-fire (GLIF) models, complemented by appro-
priate initial and update conditions (e.g. [13–15]). Extensions of this
modeling framework include the extended GLIF (E-GLIF) and the adap-
tive GLIF (A-GLIF), introduced by Geminiani et al. in [16] and Marasco
et al. in [17], respectively. The A-GLIF framework, in particular, allows
to obtain better constraints in the model parameters’ space, and to
obtain a quantitative agreement with the observed number and timing
of spikes experimentally observed in 84 CA1 neurons and interneurons
in response to a wide range of input currents.

Cells heterogeneity is another important issue. Large-scale neural
networks incorporating cell type diversity (due to e.g. intrinsic phys-
iology, morphology, connectivity, and genetic identity) have in fact
been proven to strongly influence the emergent properties of neu-
ral networks, hence playing a fundamental role in the information
processing in the nervous system (see [18] and references therein).
While implementing identical neurons in a network is biologically
unrealistic [19], the use of non-identical neurons may be analyti-
cally and computationally more challenging, although this leads to
networks which better reproduce different types of firing behavior, in-
cluding synchronization [8,11,20–25]. However, virtually all networks
of simplified neurons still use identical neurons.

Libraries of different sizes, providing non-identical neuron copies
based on available experimental data, have been obtained by either
perturbing the intrinsic model parameters of point-neuron models
(e.g. [10,18,26,27]) or adding noise to perturb morphological features
in such a way to create copies whose firing patterns remains within
experimental ranges (e.g. [28–30] and references therein). For accu-
rate morphological and biophysical implementations (e.g. [6,7]), this
problem has been solved using cloning procedures able to generate an
appropriate number of cells with individual prperties consistent with
the experimental variability.

These ex-post approaches do not allow to anticipate the firing
behavior of a clone, and this may significantly slow down the process
of creating neurons with the proper electrophysiological properties
representing, for example, specific sub-populations or distributions.

In this work, we introduce a novel methodology to implement
copies representing the different firing dynamics of CA1 neurons and
interneurons, by perturbing specific parameters in the A-GLIF model
introduced in [17]. We show how it is possible to control the dynamical
behavior of the copies and, at the same time, to remain bounded within
the experimental range.

The full database of approximately 1.2 million neurons can be found
in the live papers section of EBRAINS (https://ebrains.eu/service/live-
papers/) [31], can be used to arrange the entire neurons population of a
rat hippocampal CA1 area. The code can be easily extended to generate
an arbitrary larger population, to consider other brain regions.

The paper is structured as follows: in Section 2 we introduce the
reference experimental data used to obtain the database, together
with the A-GLIF modeling framework used to investigate neurons’
dynamics. Moreover, we illustrate the numerical strategy adopted for
the classification of any given neuron copy as member of the pyra-
midal/interneurons classes. In Section 3 we discuss different cloning
procedures and the algorithm to generate copies with controlled firing
properties. We conclude our work with a discussion of the results and
2

an outline of future research perspectives in Section 4. 𝑡
2. Materials and methods

2.1. Experimental data

As a reference to implement our procedure, we considered a set of
over 500 somatic voltage traces recorded from 84 cells: 58 pyramidal
and 26 interneurons, obtained in vitro from rat hippocampal CA1
lices [32], in response to somatic constant current injections, from
min
stim = 200 pA to 𝐼max

stim = 1000 pA. The physiological variability for
yramidal neurons and interneuron is shown in Fig. 1. The 314 traces
rom pyramidal neurons (Fig. 1, left column) were all classified as
ontinuous accommodating cells (cAC); for interneurons (Fig. 1, right
olumn), 54 traces were classified as cAC, 72 traces as bursting cells
bAC), and 62 traces as continuous non-accommodating cells (cNAC). To
etter illustrate the different firing behavior within each class, in Fig. 2
e show typical examples of number of spikes as a function of the input

urrent. Note the rather different results, in response to the same input,
bserved for different cells in both pyramidal cells (Fig. 2, left panel)
nd interneurons (Fig. 2, right panel).

.2. The A-GLIF model

.2.1. Model equations, initial and update conditions
In [17] we introduced the A-GLIF model which aims to describe

he evolution, in a subthreshold regime, of the membrane potential 𝑉
oupled with the adaptation (𝐼adap) and depolarization (𝐼dep) currents
s follows:
𝑑𝑉
𝑑𝑡

= 1
𝐶m

[

𝐶m
𝜏m

(

𝑉 − 𝐸L
)

− 𝐼adap + 𝐼dep + 𝐼stim

]

,

𝑑𝐼adap
𝑑𝑡

= −𝑘2𝐼adap + 𝐶m𝑘1𝑘2
(

𝑉 − 𝐸L
)

,

𝑑𝐼dep
𝑑𝑡

= −𝑘1𝐼dep,

(1)

where all the parameters are positive, except for the resting potential
𝐸𝐿, and the injected current 𝐼stim. Their explanation is given in Table 1.

We assume that the neuron is at rest – i.e., 𝐼stim = 0 and 𝑉 = 𝐸L –
or 𝑡 < 𝑡start , where 𝑡start represents the first time instant at which the
timulation current is different from zero. Moreover, we denote with
th the threshold current above which the neuron starts to fire, i.e. we
ssume that a spike event occurs when, for 𝐼stim > 𝐼th, the potential 𝑉
eaches the threshold potential 𝑉th.

Starting from the resting condition, the first spike for any 𝐼stim > 𝐼th
an be obtained by setting the initial conditions of the Cauchy problem
ssociated to system (1) as follows

𝑉 (𝑡start ) = 𝐸L,

adap(𝑡start ) ≡ 𝐼 startadap = 0,

𝐼dep(𝑡start ) = 𝐼 startdep (𝐼stim − 𝐼th) 𝜃(𝐼stim − 𝐼th),

(2)

here 𝐼 startdep is a suitable constant and 𝜃(𝐼stim − 𝐼th) is the step function
efined as

(𝐼stim − 𝐼th) =

{

1 if 𝐼stim > 𝐼th,
0 if 𝐼stim ≤ 𝐼th.

(3)

oherently with the LIF framework, the potential 𝑉 after a spike does
ot return to the resting value 𝐸L but at the reset potential 𝑉r . Then,
or any following spike, the initial conditions of each Cauchy problem
ssociated to (1) are modified according to the following after-spike
pdate rules

𝑉 (𝑡+spk ) = 𝑉r ,

adap(𝑡+spk ) = 𝐼0adap(𝑡
+
spk , 𝐼stim),

𝐼dep(𝑡+spk ) = 𝐼0dep,

(4)

here 𝑡+spk is the time instant following the spike time 𝑡spk , i.e. 𝑡+spk =
0 +
spk+𝛥𝑡ref , with 𝛥𝑡ref = 2ms defined as the refractory time, 𝐼adap(𝑡spk , 𝐼stim)

https://ebrains.eu/service/live-papers/
https://ebrains.eu/service/live-papers/
https://ebrains.eu/service/live-papers/
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Fig. 1. Reference experimental data and their range of variability. Spike number as a function of spike times for pyramidal neurons (left column, red markers and lines)
and CA1 interneurons (right column) classified as cAC (blue markers and lines), bAC (magenta markers and lines), and cNAC (green markers and lines). Gray areas represent the
variability regions bounded by the black curves (detailed expression available in the Supplementary information).
is a suitable set of initial values that depend on both the stimulation
current 𝐼stim and the corresponding spike times, and 𝐼0dep is a constant.

We remark that in Eq. (1)1 the passive current 1∕𝜏m
(

𝑉 − 𝐸L
)

is
opposite in sign to the leakage current component of a traditional
leaky integrate-and-fire model (see [33]). In these models, since all active
membrane conductances are ignored, in order to bring the membrane
3

potential 𝑉 back to its resting value after a perturbation, a passive
leakage current −

(

𝑉 − 𝐸L
)

∕𝜏m around the resting potential 𝐸L is
adopted, so that in the absence of other currents it will lead to a stable
equilibrium. However, in system (1) it has the opposite sign and, should
it be the only current, it would lead to an unstable membrane potential
equilibrium. Nevertheless, in the proposed model the second term in
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Fig. 2. Number of spikes as a function of the stimulation current. Pyramidal neurons (left column) and interneurons (right column) of type cAC (blue markers and lines),
bAC (magenta markers and lines), and cNAC (green markers and lines). The lower panels correspond to typical data for the spike number as a function of the stimulation currents
for some pyramidal neurons (left) and interneurons (right).
Table 1
List of parameters appearing in Eq. (1) including their description and measurement
unit.

Parameter Description UM

𝐸L resting potential mV
𝑉r reset potential mV
𝑉th threshold potential mV
𝛥𝑡ref refractory interval ms
𝐼stim external stimulation current pA
𝐶m membrane capacitance pF
𝜏m membrane time constant ms
𝐼th threshold stimulation current pA
𝑘2 𝐼adap decay rate ms−1

𝑘1 𝐼dep decay rate ms−1

the second equation of model (1), contributing to 𝐼adap, depending on
the setting of model parameters (particularly its coefficient 𝐶m𝑘1𝑘2),
can balance or even outweigh the effect of the former inverted leakage
current term. As we proved in [17], the introduction in Eq. (1)1 of
the currents 𝐼adap and 𝐼dep in addition to the inverted leakage current
allows us to increase the complexity of the potential dynamics while
preserving the linear nature of the model. In particular, the A-GLIF
model allows both to accurately reproduce the excitability properties of
hippocampal neurons and interneurons and to make the subthreshold
dynamics of 𝑉 more realistic than the one provided by a classical
LIF model. For example, in our A-GLIF framework the subthreshold
relaxation of 𝑉 from 𝑉reset exhibits monotonicity properties that are in
agreement with experimental recordings but are atypical for a classical
LIF model (see Fig. 8 in [17] and the insets in Figs. 6, 7, 10 and
Supp. Figs. S.2, S.3, S.6).

2.2.2. Nondimensional formulation of the model
Considering the following rescaled variables

𝑡 = 𝑡 , 𝑉 = − 𝑉 , 𝐼adap = −
𝐼adap , 𝐼dep = −

𝐼dep , (5)
4

𝜏 𝐸L 𝐸L 𝐶m𝑘1 𝐸L 𝐶m𝑘1
we obtain an equivalent nondimensional version of system (1) (for
simplicity, from now on we will omit the tildes)

𝑑𝑉
𝑑𝑡

= 𝛼 + 𝛽(𝐼dep − 𝐼adap) + 𝛿(1 + 𝑉 ),

𝑑𝐼adap
𝑑𝑡

= 1 − 𝐼adap + 𝑉 ,

𝑑𝐼dep
𝑑𝑡

= −𝛽𝐼dep,

(6)

where

𝛼 =
𝐼stim
𝐾

, 𝛽 =
𝑘1
𝑘2

, 𝛿 = 1
𝑘2 𝜏m

, 𝜏 = 1
𝑘2

, (7)

and 𝐾 = −𝐶𝑚 𝐸𝐿 𝑘2 is a positive scaling constant.
Similarly, the dimensionless initial conditions (2) and (4) assume

the following forms, respectively,

𝑉 (𝑡start ) = −1, 𝑉 (𝑡+spk) = −
𝑉r
𝐸L

, (8a)

𝐼adap(𝑡start ) ≡ 𝐼 startadap = 0, 𝐼adap(𝑡+spk) = 𝐼0adap(𝑡
+
spk , 𝐼stim),

(8b)

𝐼dep(𝑡start ) = 𝐼 startdep (𝐼stim − 𝐼th)𝜃(𝐼stim − 𝐼th), 𝐼dep(𝑡+spk) = 𝐼0dep, (8c)

where all time variables have been rescaled by means of 𝜏 = 1∕𝑘2.
In [17], assuming a constant stimulation current 𝐼stim, we obtained

the analytical form of the solutions of the linear system (6) as follows

𝑉 (𝑡) = − 𝐼0
adap𝛽1 + 𝐼0

dep

𝛽
[

(𝛽 − 1)
(

2 − 2𝑒𝛽(𝑡0−𝑡)
)]

+1 [(𝛽 − 1)(𝛿 + 1) + 2𝛽]

2
(

𝛽2 + (𝛽 − 1)𝛿
)

(9)

+ 𝑉 0

2
[

(𝛿 + 1)1 +2
]

+
1

2

[

𝛼(𝛽 − 1)
𝛽 − 𝛿

+ 𝛼 + 𝛿 + 1
]

−
(2 − 2)(𝛼 − 𝛽 + 𝛿)

2(𝛽 − 𝛿)
,

𝐼adap(𝑡) =
1
2
𝐼0
adap

[

2 − (𝛿 + 1)1
]

+ 𝐼0
dep

𝛽
2

[

2𝑒𝛽(𝑡0−𝑡) +1(2𝛽 + 𝛿 − 1) −2

𝛽2 + (𝛽 − 1)𝛿

]

+ 𝑉 01 −
𝛼
[

(1 − 𝛿)1 +2 − 2
]

+1,
2 𝛽 − 𝛿
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Fig. 3. Comparison between experiments and models. Mean and standard deviation for the number of spikes as a function of the input current for pyramidal neurons (red
markers and line) and interneurons cAC (blue markers and lines), bAC (magenta markers and lines), and cNAC (green markers and lines). The continuous and dashed lines represent
experimental data and model results, respectively.
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𝐼dep(𝑡) =𝐼0
dep𝑒

−𝛽(𝑡−𝑡0),

here the initial data are defined according to (8) as

0 ∶= 𝑉 (𝑡0), 𝐼0adap ∶= 𝐼adap(𝑡0), 𝐼0dep ∶= 𝐼dep(𝑡0), (10)

and

 = (𝛿 + 1)2 − 4𝛽,  = −1
2

(
√

 − 𝛿 + 1
)

(𝑡 − 𝑡0),  =
√

(𝑡 − 𝑡0),

1 =
𝑒

(

𝑒 − 1
)

√


, 2 = 𝑒

(

𝑒 + 1
)

. (11)

2.2.3. Equilibria, parameter constraints and initial data distributions
Despite the linearity of the equations, the A-GLIF model can repro-

duce a wide range of physiological firing patterns like bursting, non
adapting, and continuous adapting [32], provided that some parameter
constraints are imposed and initial data distributions, 𝐼0dep and 𝐼0adap,
re suitably chosen. The quantitative agreement between model and
xperiments is shown in Fig. 3, where we compare findings for both
yramidal neurons and interneurons. Below we report the fundamental
esults of this analysis; an in-depth investigation can be found in [17].

For 𝛼 ≠ 0 or 𝛽 ≠ 𝛿, the dynamical system (6) admits the equilibrium

1 =
(

𝛼
𝛽 − 𝛿

− 1, 𝛼
𝛽 − 𝛿

, 0
)

, (12)

that is (globally) asymptotically stable if and only if

𝛿 < 𝛽 ≤ 1
4
(1 + 𝛿)2 with 0 < 𝛿 < 1. (13)

Moreover, by imposing that the cell does not fire for 0 < 𝐼stim < 𝐼th we
obtain

𝛼th <
(1 + 𝑉th)(𝛿 − 1)2

4
,

𝛼th
1 + 𝑉th

+ 𝛿 < 𝛽 ≤ 1
4
(𝛿 + 1)2, 0 < 𝛿 < 1, (14)

here 𝑉th = −𝑉th∕𝐸L is the nondimensional form of the threshold
otential 𝑉th, and 𝛼th = 𝐼th∕𝐾.

Since 𝑉 (𝑡) is an increasing function for any positive stimulation
urrent 𝐼stim, the initial data 𝐼0dep and 𝐼0adap must satisfy the following
ondition (see Eq. (8))

0
adap <

𝛼
𝛽
+ 𝐼0dep +

𝛿
𝛽
(1 + 𝑉 0) ≡ 𝐼max

adap, (15)

where 𝑉 0 = −1 or 𝑉 0 = −𝑉𝑟∕𝐸L for the first or after the first spike
vent, respectively.
5

In [17] we proved that the 𝐼0adap(𝑡
+
spk , 𝐼stim) distribution for any given

ell can be represented by a Monod-type function as follows1

0
adap(𝑡

+
spk , 𝐼stim) ∶= 𝑐 +

𝑎 𝑒𝑏 𝐼stim (𝑡+spk − 𝑡start )

𝜂 + (𝑡+spk − 𝑡start )
, ∀𝐼stim ∈

[

𝐼min
stim, 𝐼

max
stim

]

, (16)

where 𝑎, 𝑏, 𝑐, 𝜂 are constants, and 𝑡start is the last instant in which 𝐼stim =
0 or 𝐼stim ≤ 𝐼th.

For sake of simplicity, we assume that the function (16) is defined
or all 𝜂+(𝑡f irstspk − 𝑡start ) > 0, where 𝑡f irstspk is the time of the first spike event
or the current 𝐼stim, and 𝜂 ≥ 0. Moreover, Eq. (16) is an increasing
onotone function of 𝑡 when 𝑎 𝜂 > 0 and decreasing monotone for
𝜂 < 0. The plateau value of 𝐼0adap, defined as

(𝐼stim) ∶= lim
𝑡→+∞

𝐼0adap(𝑡, 𝐼stim) = 𝑐 + 𝑎𝑒𝑏𝐼stim , (17)

s an increasing monotone function of 𝐼stim when 𝑎 𝑏 > 0 and decreasing
onotone when 𝑎 𝑏 < 0.

We note that Eq. (16) defines a sequence of constant ISIs if 𝑎 = 0
and 𝑐 ≥ 0 (with 𝐼0adap independent from 𝐼stim) or 𝜂 = 0 and 𝑐+𝑎𝑒𝑏𝐼stim > 0
(with 𝐼0adap dependent from 𝐼stim). Then, assuming 𝑎 ≠ 0 and 𝜂 > 0 and
imposing that the function (16) is positive for any stimulation current
and at any time, we obtain a sequence of nonconstant ISIs by imposing
the following additional constraints on parameters 𝑎, 𝑏 and 𝑐:

(i) either 𝑎 > 0, 𝑐 ≥ 0, ∀𝑏;
(ii) or 𝑎 < 0, 𝑏 < 0, 𝑐 ≥ −𝑎.

By simultaneously fitting, for each neuron, the set of 𝐼0adap values
for all experimental currents using Eq. (16) (solid curves in Fig. 4), we
obtained a function which allows us to predict the spike times of a given
neuron for any constant current injection in the interval [𝐼min

stim, 𝐼
max
stim ].

Several experimental traces show an unexpected block of firing,
long before the end of the stimulation at constant current. To reproduce
these firing blocks for any neuron and any stimulation current 𝐼stim,
in [17] we implemented a Monod block procedure that allowed us to
determine the time interval in which the Monod function (16) should
be defined. First, we identified the range of currents [𝐼𝐼block , 𝐼

𝐼𝐼
block ] such

that for 𝐼stim ∈ [𝐼𝐼block , 𝐼
𝐼𝐼
block ] a firing block occurs, i.e.

𝑡lastspk (𝐼stim) + 2 𝐼𝑆𝐼last (𝐼stim) < 𝑇 , (18)

where 𝑡lastspk and 𝐼𝑆𝐼last are the time and the 𝐼𝑆𝐼 of the last spike
event for the current 𝐼stim, respectively, and [𝑡start , 𝑇 ] is the stimulation

1 We remark that the 𝐼0
adap(𝑡

+
spk , 𝐼stim) distributions for all cells provided by

the optimization procedure satisfy the constraint (15). However, this constraint
could be violated in determining the interpolating function (16) of each cell.
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Fig. 4. Monod-type functions. Monod functions (continuous lines) interpolating the initial data distributions 𝐼0
adap(𝑡

+
spk , 𝐼stim) (dots) for the pyramidal cells 95810012 (left panel)

and 95912005 (right panel).
Fig. 5. Plot of the derivative of 𝑉 respect to 𝛼. Plot of the function 𝑑𝑉
𝑑𝛼

in Eq. (22)
as function of 𝑡− 𝑡0 obtained by varying 𝛽 and 𝛿 within the admissibility ranges defined
by conditions (13) with a step of 0.01 for both parameters.

interval. Subsequently, we determined the function

𝑡 = 𝐴𝐼,𝐼𝐼𝐼stim + 𝐵𝐼,𝐼𝐼 , (19)

here 𝐼𝑆𝐼𝐼last = 𝐼𝑆𝐼last (𝐼𝐼block ), 𝐼𝑆𝐼
𝐼𝐼
last = 𝐼𝑆𝐼last (𝐼𝐼𝐼block ), and

𝐼,𝐼𝐼 =

(

𝐼𝑆𝐼𝐼𝐼last + 2𝑡lastspk (𝐼
𝐼𝐼
block )

)

−
(

𝐼𝑆𝐼𝐼last + 2𝑡lastspk (𝐼
𝐼
block )

)

2(𝐼𝐼𝐼block − 𝐼𝐼block )
, (20)

𝐵𝐼,𝐼𝐼 =
𝐼𝐼𝐼block

(

𝐼𝑆𝐼𝐼last + 2𝑡lastspk (𝐼
𝐼
block )

)

− 𝐼𝐼block
(

𝐼𝑆𝐼𝐼𝐼last + 2𝑡lastspk (𝐼
𝐼𝐼
block )

)

2(𝐼𝐼𝐼block − 𝐼𝐼block )
.

inally, denoting the stimulation current starting from which the firing
lock does not occur by 𝐼f ire, the function (19) provides the time
nterval in which the Monod function (16) is defined as follows

or all 𝐼stim ≤
𝐼𝐼𝐼block + 𝐼f ire

2
≡ 𝐼 infblockwhen 𝐼f ire > 𝐼𝐼𝐼block , (21)

for all 𝐼stim ≥
𝐼𝐼block + 𝐼f ire

2
≡ 𝐼 supblockwhen 𝐼f ire < 𝐼𝐼block .

This procedure can be easily generalized when there is only one
block value that satisfies condition (18) by setting 𝐼𝐼block = 𝐼block , 𝐼𝐼𝐼block =
𝐼f ire when 𝐼f ire > 𝐼block ; and 𝐼𝐼block = 𝐼f ire, 𝐼𝐼𝐼block = 𝐼block if 𝐼f ire < 𝐼block .

2.2.4. Monotonicity property of 𝑉 with respect to 𝛼
In this section, we show that the function 𝑉 (𝑡) provided in Eq. (9)

is monotonically increasing with respect to 𝛼. In particular, we show
that the function
𝑑𝑉
𝑑𝛼

=
2 −1(1 − 2𝛽 + 𝛿) −2

2(𝛽 − 𝛿)
, (22)

(where the functions 1(𝑡− 𝑡0), 2(𝑡− 𝑡0) have been defined in (11)) is
positive for any 𝑡 > 𝑡 , as also numerically confirmed in Fig. 5.
6

0

Equivalently, introducing 𝑇 = 𝑡 − 𝑡0 we show that 𝑑𝑉
𝑑𝛼 (𝑇 ) is strictly

positive in 𝑇 for any 𝑇 > 0. This relies on the fact that:

(i) 𝑑𝑉
𝑑𝛼 (0) = 0

(ii) 𝑑2𝑉
𝑑𝛼 𝑑𝑇 (0) = 1 > 0

(iii) 𝑑2𝑉
𝑑𝛼 𝑑𝑇 ≥ 0 for any 𝛽, 𝛿 satisfying Eq. (13)

(iv) lim𝑇→∞
𝑑𝑉
𝑑𝛼 (𝑇 ) =

1
𝛽−𝛿 > 0 for any 𝛽, 𝛿 satisfying Eq. (13).

Conditions (i), (iv) directly follow from Eq. (22). On the other hand,
conditions (ii) and (iii) are obtained by rewriting 𝑑2𝑉

𝑑𝛼 𝑑𝑇 in terms of 𝛽,
𝛿, and 𝑇 first

𝑑2𝑉
𝑑𝛼 𝑑𝑇

=
𝑒−

1
2 𝑇

(

√

−𝛿+1
)

(

√

 − 𝛿 +
(

√

 + 𝛿 + 1
)

𝑒𝑇
√

 − 1
)

2
√


, (23)

where  has been defined in (11).
Substituting 𝑇 = 0 in (23) leads to condition (ii). As for (iii), we

observe that the denominator of (23) is always positive under the
stability conditions on 𝛽 and 𝛿 given in Eq. (13). On the other hand,
the numerator is positive if and only if

𝑇
√

 ≥ log

⎛

⎜

⎜

⎜

⎝

4𝛽
(

√

 + 𝛿 + 1
)2

⎞

⎟

⎟

⎟

⎠

. (24)

Here, the left-hand side is positive, whereas the right-hand side is
negative since the argument of the logarithm is less or equal than 1
for any 𝛽, 𝛿 satisfying Eq. (13). This inequality is then automatically
satisfied, leading to condition (iii).

2.3. Classification analysis

We used the built-in Mathematica (ver. 13.01, Wolfram) function
Classify to perform the classification of the neuron copies as belong-
ing to pyramidal neurons or interneurons classes. Different supervised
classifiers together with cross validation procedures, both performed
using the internal algorithms of Classify, have been implemented.
The classifiers that gave the best accuracy with the given dataset
was Gradient Boosted Trees (GBT), a machine learning technique for
regression and classification problems that produces a prediction model
in the form of an ensemble of trees. The trees are trained sequentially
to improve the accuracy and robustness of the final model.

3. Results

3.1. Mathematical procedures for models generation

The goal of this section is to describe several mathematical proce-
dures that can be used to generate model neurons with firing properties
within the experimental variability range (see Figs. 1–2).
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Fig. 6. Spike number as a function time for the pyramidal cell 95817008 (black curves and dots) and for 5 neuron copies (colored curves and dots) obtained by fixing the numerical
values of all parameters except 𝐼 start

dep . For all copies condition (15) is verified. The inset in each panel represents the original simulation compared with the copy corresponding to
75 𝐼 start

dep .
)
)

3.1.1. Temporal shift of all spike times
In this section, we discuss the procedures to delay/anticipate the

first spike time and thus to change all other spike times. This can be
achieved by modulating 𝐼 startdep and 𝐼 startadap in Eqs. (8), with all the other
parameters in Eqs. (7) and (16) fixed.

To this aim, it should be noted that under the constraints (13) the
potential 𝑉 is a decreasing (resp. increasing) function with respect to
𝐼0adap (resp. 𝐼0dep) when the other initial data are fixed. In fact, we have

𝑑𝑉
𝑑𝐼0adap

=
𝛽𝑒

1
2 𝜎(𝑡−𝑡0)

√



[

1 − 𝑒
√

(𝑡−𝑡0)
]

< 0, (25)

and it can be numerically proved that (see Supp. Fig. S.1)
𝑑𝑉
𝑑𝐼0dep

> 0. (26)

To obtain a different time of first spike, at least one of the values 𝐼 startdep
and 𝐼 startadap in Eqs. (8) must be varied. In view of Eqs. (16), modifying
the first spike time results in a different distribution for the initial
data 𝐼0adap, thus obtaining a different distribution of spike times (see
Supp. Figs. S.2 and 6).

Owing to Eqs. (16), (25), and (26), we can modulate the time of
both the first and any subsequent spikes by modifying the value of
𝐼 startadap and/or 𝐼 startdep . In particular, increasing the values of 𝐼 startadap or 𝐼 startdep
will result in increasing or decreasing first spike times, and vice versa,
respectively. We note that since 𝐼adap is a nonnegative function, in view
of Eq. (8b) we can only choose positive values of 𝐼 startadap . This leads
to an increase in the first spike time compared to the original model
(see colored curves and dots in Supp. Fig. S.2). Moreover, in view
7

of Eqs. (15) and (25), for any fixed value of 𝐼 startdep , the minimum and
maximum values of the first spike time can be obtained by setting the
values of 𝐼 startadap , respectively, as follows

𝐼 startadap = 0, 𝐼 startadap = 𝛼
𝛽
+ 𝐼 startdep (𝐼stim − 𝐼th)𝜃(𝐼stim − 𝐼th). (27)

and, consequently, by setting 𝐼 startadap ∈
(

0, 𝛼𝛽 + 𝐼 startdep (𝐼stim − 𝐼th)𝜃(𝐼stim − 𝐼th
we can modify the time of all spikes including the first one (see
Supp. Fig. S.2).

Similarly, we can modify the time of the first spike by choosing a
different value for 𝐼 startdep (see Fig. 6). In particular, in view of Eqs. (15)
and (26), for any fixed value of 𝐼 startadap , we can choose arbitrary positive
values for 𝐼 startdep provided that condition (15) is satisfied. This leads to
an early or late first spike time depending on whether 𝐼 startdep is smaller or
larger than the corresponding value in the original model, respectively
(see colored curves and dots in Fig. 6).

The above results show that all the spike times can be modulated
in a predictable way by choosing different values of 𝐼 startdep and/or 𝐼 startadap ,
provided that condition (15) is satisfied.

3.1.2. Temporal shift of all spike times except the first one
In this section, we examine mathematical procedures allowing to

delay/anticipate all spike times except the first one. This can be ob-
tained in two ways: either modifying 𝐼0dep or modifying the parameters
𝑐 and 𝜂 of the Monod function (16).

In the first case, considering Eq. (26) and fixing the initial values of
𝑉 0 and 𝐼0adap, we have that increasing values of 𝐼0dep result in decreasing
𝐼𝑆𝐼s, and vice versa (see Fig. 7). We remark that shifting the first spike
time automatically induces a shift of all the subsequent spike times.
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Fig. 7. Spike number as a function of time for the pyramidal cell 95817008 (black curves and dots) and for 5 neuron copies (colored curves and dots) obtained by fixing
the numerical values of all parameters except 𝐼0

dep. For all copies condition (15) is verified. The inset in each panel represents the original simulation compared with the copy
corresponding to the 3 𝐼0

dep.
,𝐼𝐼
This in turn modifies the values of 𝐼0adap given by the Monod function
(16); such effect, however, mainly depends on the monotonicity proper-
ties of the Monod function and of the potential 𝑉 with respect to 𝐼0adap.
In the second case, recalling Eq. (16), we have

𝑑𝐼0adap
𝑑 𝜂

= −
𝑎𝑒𝑏𝐼stim (𝑡+spk − 𝑡start )
[

𝜂 + (𝑡+spk − 𝑡start )
]2

, (28)

i.e. the function 𝐼0adap is decreasing or increasing with respect to 𝜂 when
𝑎 > 0 or 𝑎 < 0, respectively. Consequently, if we fix the initial values
of 𝑉 0 and 𝐼0dep and the parameters 𝑎, 𝑏, 𝑐, increasing values of 𝜂 will
result in increasing 𝐼𝑆𝐼s when 𝑎 < 0 and in decreasing 𝐼𝑆𝐼s when
𝑎 > 0 (see Supp. Fig. S.3). It should be noted that the Monod functions
(16) obtained by modifying the parameter 𝜂 have the same plateau
value 𝑐 + 𝑎𝑒𝑏𝐼stim (see Supp. Fig. S.4); this implies that condition (15)
is automatically satisfied.

In contrast, a change in the 𝑐 parameter results in a translation of
the Monod function along the 𝑦-axis, and therefore in a different value
of the plateau (see Supp. Fig. S.5). However, in this case to satisfy
condition (15) for all injected currents 𝐼stim it is sufficient to perturb 𝑐
as follows

𝑐′ = 𝑐 + 𝜀𝑐 ∶ 𝜀𝑐 ∈
(

−𝑐, 𝛼
𝛽
+ 𝐼0dep +

𝛿
𝛽
(1 + 𝑉 0) −

(

𝑐 + 𝑎𝑒𝑏𝐼stim
)

)

. (29)

In Supp. Fig. S.6 we show an example illustrating the effect of this
perturbation.
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3.1.3. Changing the number of spikes
The goal of this section is to define mathematical procedures leading

to an increase/decrease in the total number of spikes. This can be
achieved either by modifying the time interval in which the Monod
function (16) is defined (i.e. when a firing block occurs in response to
a stimulation current 𝐼stim) or by varying the nondimensional parameter
𝛼 in Eq. (7).

The first procedure is realized by modifying the coefficients 𝐴𝐼,𝐼𝐼 , 𝐵𝐼
in (19). In particular, by introducing in (19) the perturbed parameters

𝐴′
𝐼,𝐼𝐼 = 𝐴𝐼,𝐼𝐼 + 𝜀𝐴, 𝐵′

𝐼,𝐼𝐼 = 𝐵𝐼,𝐼𝐼 + 𝜀𝐵 , (30)

we obtain a firing block in the stimulation interval [𝑡start , 𝑇 ] and in
response to the stimulation current 𝐼stim at the time

𝑡′block (𝐼stim) = 𝑡block (𝐼stim) +
(

𝜀𝐴𝐼stim + 𝜀𝐵
)

, (31)

where 𝑡block is the time in which the firing block occurs for the original
model in response to the stimulation current 𝐼stim, i.e.

𝑡block (𝐼stim) = 𝐴𝐼,𝐼𝐼𝐼stim + 𝐵𝐼,𝐼𝐼 , (32)

if and only if 𝜀𝐴, 𝜀𝐵 are chosen such that

𝑡f irstspk − 𝑡block < 𝜀𝐴𝐼stim + 𝜀𝐵 < 𝑇 − 𝑡block , (33)

where 𝑡f irstspk is the time of the first spike in response to the stimulation
current 𝐼stim.

In particular, we have

• 𝑡′block < 𝑡block when 𝑡f irstspk − 𝑡block < 𝜀𝐴𝐼stim + 𝜀𝐵 < 0;
• 𝑡′ > 𝑡 when 0 < 𝜀 𝐼 + 𝜀 < 𝑇 − 𝑡 .
block block 𝐴 stim 𝐵 block
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Fig. 8. Effects of firing block perturbation. The two panels show the result of obtained using different combinations of firing block parameters, starting from two original
optimizations (cell 95822005 and 99111006).
We note that, with this approach, the range of currents in which the fir-
ing block occurs remains unchanged. However, in the copy generation
procedure it is also possible to eliminate one or both firing block effects
or to modify the value of 𝐼 supblock and 𝐼 infblock in Eq. (21) (see Fig. 8). The
perturbation of each type of block (superior or inferior) is characterized
by the triplet (𝐼 supblock , 𝜀

sup
𝐴 , 𝜀sup𝐵 , ) or (𝐼 infblock , 𝜀

inf
𝐴 , 𝜀inf𝐵 ), respectively. In par-

ticular, since the spike times are not affected by such perturbation, plots
as the ones shown in Fig. 8 (consisting in variations of Input/Output
(I/O) curves) help us emphasizing how the firing block perturbations
illustrated above affect the number of spikes for different stimulation
currents. An analogous variation in the I/O behavior of a given neuron
is shown in Fig. 9. There, we present the results obtained by changing,
one parameter at the time, the overall shape of the excitability curve
in such a way to: (1) cover the entire experimental variability range
(shaded area in Fig. 9), starting from the optimization of a given
experimental neuron (Fig. 9, black in top panel), (2) invert the I/O
response (Fig. 9, middle panel), or (3) change the I/O curvature (Fig. 9,
bottom panel). Similar results (see Suppl. Fig. S.7) can be obtained
using several other parameters’ perturbation.

In Fig. 11 we compare the spike number as a function of the spike
times for the A-GLIF model of the pyramidal cell 95817008 with those
obtained for each of the 90 neuron copies. Note the large variability,
in response to the same input, observed for the neuron copies.

Another way to change the total number of spikes is modifying the
nondimensional parameter 𝛼 while keeping 𝛽, 𝛿, and 𝜏 constant (see
Eq. (7); we recall that 𝐾 is a positive scaling constant defined as 𝐾 =
−𝐶𝑚 𝐸𝐿 𝑘2). The variations on 𝛼 is therefore going to be interpreted as
variations in the dimensional parameters 𝐶𝑚 (whose values are derived
from optimization procedures), whereas 𝑉th and 𝐸𝐿 are considered
constant due to their biophysical meaning. We use the superscript 𝑛
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and 𝑜 to indicate the ‘‘new’’ and ‘‘old ’’ value (for the neuron copies) of
the corresponding parameter, respectively.

In particular, we consider 𝐶𝑛
𝑚 = 𝑝𝐶𝑜

𝑚 with 𝑝 ≠ 1 being a positive
parameter, whereas 𝑘2, 𝑘1, and 𝜏𝑚 maintain the same value. This
implies 𝛼𝑛 = 𝛼𝑜

𝑝 , while 𝛽, 𝛿, and 𝜏 remain unchanged. Consequently,
the stability conditions (13) are identically satisfied. An important
consequence of considering the updated parameter 𝛼𝑛 = 𝛼𝑜

𝑝 is that the
threshold of the stimulation current 𝐼th must also change accordingly
by introducing 𝐼𝑛th = 𝑝 𝐼𝑜th. We provide here an example for sake of
clarity. Let us consider a neuron satisfying 𝐼𝑜th = 300 pA; this implies
that when the neuron is stimulated with a current 𝐼stim = 200 pA it
will not fire, whereas for 𝐼stim = 400 pA the number of spikes will be
non-zero – e.g., let us suppose it will be equal to 4. If we create a
copy of such neuron with 𝑝 = 1∕2 (while leaving the other parameters
and initial data unaffected), we have that 𝛼𝑛 = 𝛼𝑜

𝑝 > 𝛼𝑜. Since the
potential 𝑉 is increasing with respect to 𝛼 (see Section 2.2.4), we have
that the neuron copy will produce more spikes than the original one.
In particular, when 𝐼stim = 200 pA, the copy will behave as the original
neuron behaved for 𝐼stim

𝑝 = 400 pA, i.e. will produce 4 spikes. Therefore,
the new threshold stimulation current cannot be still considered to be
equal to 300 pA, and will have to be decreased proportionally to 𝑝 as
𝐼𝑛th = 𝑝 𝐼𝑜th – which is equal to 150 pA. This assumption on 𝐼𝑛th ensures
that the condition in Eq. (14) is automatically satisfied for the neuron
copy both for any 𝑝, since 𝛼𝑛th =

𝐼𝑛th
𝐾𝑛 =

𝑝 𝐼𝑛th
𝑝𝐾𝑜 =

𝐼𝑛th
𝐾𝑜 = 𝛼𝑜th.

We can therefore summarize the effects produced by considering
neuron copies with 𝑝 < 1 and 𝑝 > 1 as follows (see Fig. 10 for an
example):

1. for 𝑝 < 1 we have 𝛼𝑛 > 𝛼𝑜 and 𝐼𝑛th < 𝐼𝑜th. We hence have that
the new initial condition on the first interval (defined in Eq. (2))
𝐼𝑛 (𝑡 ) = 𝐼 start (𝐼 −𝐼𝑛 ) 𝜃(𝐼 −𝐼𝑛 ) is greater than 𝐼𝑜 (𝑡 ).
dep start dep stim th stim th dep start
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Fig. 9. Number of spikes as a function of the input current. Number of spikes as a function of different constant currents for a pyramidal neuron (top left, black curves and
dots), a cAC interneuron (top right, black curves and dots), and a cNAC interneuron (bottom, black curves and dots). Data related to copies obtained by fixing all parameters
except for 𝐼0

dep are shown via colored curves and dots.
The fact that the potential 𝑉 is a monotonically increasing
function w.r.t. both 𝐼0dep and 𝛼 (see Section 2.2.4) implies that
neuron copies constructed with 𝑝 < 1 always exhibit more spikes
than the original neuron.

2. for 𝑝 > 1 we have 𝛼𝑛 < 𝛼𝑜 and 𝐼𝑛th(𝑡start ) > 𝐼𝑜th(𝑡start ). Therefore, we
obtain that here 𝐼𝑛dep < 𝐼𝑜dep. The abovementioned monotonicity
properties of 𝑉 w.r.t. both 𝐼0dep and 𝛼 imply that, in this case,
neuron copies constructed with 𝑝 > 1 always exhibit less spikes
than the original neuron.

Finally, we note that the parameter 𝜏 also affects the spiking dy-
namics, but only on the nondimensional level, since it only influences
the nondimensional time scalings (see Supplementary Materials).

The overall conceptual results of Section 3.1.1– 3.1.3 are summa-
rized in Table 2, where we report a qualitative description of the effects
obtained by perturbing different parameters. Additionally, Fig. 11 and
Supp. Fig. S.8 provide 90 and 108 neuron copies, respectively, ob-
tained by implementing all parameter variations described in Table 2.

3.2. Numerical implementation of the generation procedure

The aim of this section is to illustrate the numerical procedures
leading to (i) the generation of neuron copies, and (ii) the classification
of the dataset of neuron copies into the learned classes pyramidal
neurons (pyr) and interneurons (int). As a result of the above numerical
procedures, we obtained two downloadable databases, as summarized
in Figs. 12 and 14.

3.2.1. Generation of neuron copies
In line with the investigation carried out in Section 3.1, copies of

pyramidal neurons and interneurons are generated starting from the
optimized values of the following 12 parameters2

max 𝐼 startadap , 𝐼
start
dep , 𝐼0dep, 𝜂, 𝑐, (𝐼

sup
block , 𝜀

sup
𝐴 , 𝜀sup𝐵 ), (𝐼 infblock , 𝜀

inf
𝐴 , 𝜀inf𝐵 ), 𝛼 (34)

2 We recall that the perturbations of the parameter 𝛼 automatically lead to
modifying the value of the stimulation current 𝐼 (see Section 3.1.3).
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th
via an iterative procedure, where the input value of each parameter is
altered by considering a new, rescaled value based on an admissible
scaling factor contained in a suitable list of variable size.

A neuron copy is considered admissible if and only if the resulting
spike times at each constant stimulation current fall within the corre-
sponding experimental region as represented in Fig. 1 (see Supporting
information). Therefore, a validation procedure is run during the copies
generation in order to dismiss those for which this requirement does
not hold. In this procedure, the set of parameters used for the copy
generation is discarded as soon as the numerical spike times, for
one or more stimulation currents, lie outside the region defined by
experimental data.

In the case of parameters max 𝐼 startadap and 𝐼 startdep it is possible to perform
an a priori validation study based on the experimental range of first
spike time at each current in order to identify ranges of variability for
the corresponding scaling factors. This procedure (described into the
Supplementary information) allows to reduce the number of dismissed
copies resulting from the validation procedure described above, that
must be executed nevertheless.

A schematic representation of the implementation procedure is
outlined in Fig. 12. Experimental data3 and optimized parameter values
for 84 pyramidal neurons and interneurons (identified by a neuron ID)
are stored into a JSON file in a database like structure designed to
efficiently retrieve data necessary to calculation. For each parameter
in Eq. (34) here generically defined as 𝛤𝑖, 𝑖 = 1,… , 12, suitable lists 𝜔𝑖
of scaling factors ℎ𝑖,𝑗 are defined as

𝜔𝑖 ∶=
{

ℎ𝑖,𝑗 , 𝑗 = 1,… , |𝜔𝑖|
}

.

The validation procedure described above will allow to select the
admissible coefficients ℎ𝑖,𝑗 , i.e. the scaling factors for which the new,
rescaled parameter ℎ𝑖,𝑗𝛤𝑖 satisfies the admissibility constraints. We note
that for ℎ1,𝑗 = 0, and ℎ𝑖,𝑗 = 1 for 𝑖 ≠ 1 we retrieve the value of the
parameter 𝛤𝑖 corresponding to the reference neuron from which the

3 The parameter values of 𝐸L, 𝑉r , 𝑉th as well as the spike times at any
constant currents.
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Fig. 10. Spike number as a function of time for the pyramidal cell 95817008 (black curves and dots) and for 7 neuron copies (colored curves and dots) obtained by fixing all
parameters except for 𝛼. The inset in each panel represents the original simulation compared with the copy corresponding to 0.5 𝑝.
copies are derived. The number of copies generated depends on the
number of admissible scaling factors considered for each parameter,
up to a maximum of 𝑁 ∶=

∏12
𝑖=1 |𝜔𝑖|. Within these 12 nested for-loops,

the A-GLIF simulations and the validation procedure described above
are performed: this finally leads to set the parameters for 𝑀 ≤ 𝑁
admissible copies which are then saved together with simulated spiking
times into an analogous JSON data structure.

Fig. 13 shows a snapshot of the user interface for entering the
required information (neuron type and the number of neuron copies)
and to visualize the resultant plots of the spike number as a function of
the time for the neuron copies. All generated data can be downloaded
as a JSON file.

3.2.2. Classification of the neuron copies
In this section, we illustrate the classification procedure to confirm

whether the overall firing behavior of a neuron copy falls into the
physiological variability of the pyramidal or the interneuron cells. To
11
this end, we characterized the neuronal activity of the cells using
the following current-dependent measures for each neuron and trace
obtained in response to a constant stimulation current 𝐼stim

𝑡f irstspk , 𝑡lastspk , 𝑛tot , ISImin, ISImax, ISImean, ISISD, (35)

where 𝑡f irstspk and 𝑡lastspk are the times of the first and the last spike, 𝑛tot is
the total number of spikes; ISImin, ISImax, ISImean, ISISD are the minimum,
maximum, mean and standard deviation values of the ISIs sequence,
respectively. Then, we created a binary labeled training dataset (pyr
and int) to identify the somatic activity for each of the 58 pyrami-
dal neurons and 26 interneurons using the seven features defined in
Eq. (35) obtained by varying the stimulation current from 200pA to
1000pA with a step of 200pA. Hence, all the available experimental
data was used as a training set to classify each neuron copy as belonging
to pyr neurons or int classes. However, training the GBT classifier with
these dataset resulted in a relatively low accuracy performance (about
76.85%) due to both the size imbalance of the two datasets and the
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Fig. 11. Spike number as a function of the spike times for the pyramidal cell 95817008 (black curves and dots) and for 90 neuron copies (colored curves and dots) obtained
from it by fixing the numerical values of 𝐼 start

adap and 𝑐 and varying the other parameters as follows: ℎ 𝐼 start
dep where ℎ = 0.5, 0.75, 1, 2, 10; 𝑚𝐼0

dep where 𝑚 = 0.1, 0.25, 0.5, 1, 1.5, 2; 𝑛 𝜂 where
𝑛 = 0.75, 1, 2. The original model is obtained by setting ℎ = 𝑚 = 𝑛 = 1 (black curves and dots).

Fig. 12. Flow-chart illustration of the numerical implementation for the generation of a database of neuron copies. Here the sets 𝜔𝑖, 𝑖 = 1,… , 12 represent the lists of scaling
factors leading to modified values of the corresponding parameter 𝛤𝑖, representing a generic parameter among the ones in Eq. (34). The initial file DB_neurons_JSON containing
information about experimental and optimized pyramidal neurons and interneurons is then fed into 12 nested for-loops and, after an A-GLIF simulation and a validation procedure,
leads to a new file DB_copies_JSON containing information about parameter values and simulated spike times for the generated 𝑀 admissible copies.



Mathematical Biosciences 371 (2024) 109179A. Marasco et al.
Table 2
Summary of the possible variations in the copies firing dynamics linked to the mathematical procedure for each effect as illustrated in Sections
3.1.1-3.1.3.
Effect Parameter variation

Temporal shift of all spike times

Delay the first spike time and changes all other spike times Increase 𝐼 start
adap

Anticipate the first spike time and changes all other spike times Increase 𝐼 start
dep

Temporal shift of all spike times except the first one

Anticipate all but the first spike time Increase 𝐼0
dep

Delay all but the first spike time Increase 𝑐

Delay/anticipate all but the first spike time if Increase 𝜂
𝑎 > 0 or 𝑎 < 0, respectively

Change in number of spikes

Generate more/less spikes Positive/negative values of
𝜀𝐴𝐼stim + 𝜀𝐵 for any 𝐼stim

Increase the total number of spikes Increase 𝛼
(⇒ decrease 𝐼th)
Fig. 13. Copies generation frontend. The user can select the neuron type and set the number of neuron copies. By clicking on Plot copies and Download JSON file the user can
visualize the plots of the spike number as a function of the time for the neuron copies and download all data saved in JSON format, respectively. Analogously, all data for correctly
classified neuron copies can be downloaded as a JSON file.
small size of the dataset labeled as interneurons. To overcome the
problem associated with a limited amount of data for the interneurons
class, we extended this dataset with the A-GLIF interneurons models
implemented in [17].4 In this way the resulting training set included 58
labeled data for the pyramidal neurons and 50 data for the interneurons
(instead of the initially 26). We found that in this case GBT had an
accuracy of 80.3% and a precision of 0.927 for the pyr class and 0.679
for the int class. Fig. 15 depicts the confusion matrix for GBT trained

4 In [17] we proved the statistical indistinguishability of these models
with the experimental data relative to the neuronal activity of interneuron
cells. However, only for 24 interneurons the corresponding A-GLIF models are
admissible, i.e. the resulting spike times at each stimulation current fall within
the experimental region.
13
with the experimental data for pyramidal neurons and experimental
and A-GLIF data for the interneurons.

For each copy, we calculated the probability according to which
it was classified as a member of one of the two classes. Then, we
computed the mean ± standard deviation for all the neuron copies
correctly classified as pyr and int. In this context, ‘‘correctly’’ should
be intended as ‘‘as expected by the generation procedure’’, where a
pyr/int copy which fires within the experimental regions computed by
the algorithm is assumed to be pyr/int. These results suggest that it
is possible to successfully classify a neuron copy as belonging to the
class of pyramidal neurons or interneurons with an accuracy well above
chance. Interestingly, the classification is highly accurate in terms of
the probability with which each neuron copy is correctly assigned to a
class (about 0.95 ± 0.08 for pyr and 0.94 ± 0.11 for int).

Fig. 13 shows a snapshot of the user interface for entering the
required information and to visualize the resulting plots of the spike
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Fig. 14. Flow-chart illustration of the numerical implementation for the generation of a database of neuron copies classified.
Fig. 15. Confusion matrix.

number as a function of the time for the copies that were correctly
classified. All generated data can be downloaded as a JSON file.

4. Discussion

Integrate and fire-type models (IF), introduced more than a century
ago by Lapique in [34], can be considered the first attempt to mathe-
matically model a neuron’s activity in response to an external input.
The basic idea was so insightful that it brilliantly passed the proof
of time, being still largely used in large-scale simulations of neural
networks, due to computational efficiency and ability to retain the
essential features of neuronal excitability. However, it soon became
clear that neurons have much more complex dynamics, which need
additional elements to be added to the simple IF scheme. As soon as
it was experimentally and mathematically realized that transmembrane
ion channels are the basic elements modulating neuronal response [35],
14
different inward and outward ion currents, and their interplay, were
found to underlie firing rate adaptation and other complex firing pat-
terns in physiological and pathological conditions (e.g. [36–40]). The
simple IF model thus needs to be extended to include at least two
additional elements, representing the effect of inward and outward
currents. As discussed in the Introduction, over the past years there
have been several suggestions on how to consider these currents. In the
model used for this work, which we called A-GLIF [17], the adaptation
current 𝐼adap represents outward currents, causing a hyperpolarizing
effect, whereas the current 𝐼dep represents inward currents, which gen-
erate a depolarization. Their concurrent dynamic makes the model able
to a priori reproduce several electrophysiological features. However,
it must be noted that a direct link between these currents and those
generated by the plethora of ion channels cannot be established, since
any IF models and their generalized variations still remain a system of
linear ODEs.

The major limitation of the model, shared with any other model
based on an IF scheme with a system of linear ODEs, is that it cannot
reproduce the intrinsic complex dynamics observed in some neurons,
and it cannot be directly linked to the biological/biochemical processes
in effect in a real neuron. However, any short term modulatory effect,
such as intracellular calcium dynamics, can be readily reproduced
through its action on the spike times. In its current form, our model
is able to reproduce all the different types of firing patterns of CA1
pyramidal neurons and interneurons. Other firing behaviors such as
chattering or bistability (e.g. see Fig. 2 of [41]) were outside the scope
of this work, and could be considered in future A-GLIF implementations
of other neuron types. It is sufficient to note here that, for example, the
model can be adapted to reproduce chattering during the optimization
phase, by exploiting the monotonic dependence of the membrane po-
tential 𝑉 on the adaptation current 𝐼adap and resetting 𝐼adap to a large
value after each burst, repeatedly applying the Monod block procedure.

In this work, we have introduced an automatic numerical procedure
to generate neuron copies based on experimental and optimized data
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Table S.1
Coefficients of the lower and upper limit curves for the region of experimentally feasible spike number 𝑦low, 𝑦up, respectively, as function
of time 𝑡 defined in Eq. (36), together with the largest time supporting a single spike for each constant stimulation current 𝐼stim =
200, 400, 600, 800, 1000 pA, both for pyramidal neurons (upper table) and interneurons (lower table).

Pyramidal neurons

200 pA 400 pA 600 pA 800 pA 1000 pA

𝑦low  = 1
 = 0.004
 = 1
 = 0.333
𝑡1max = 160ms

 = 1
 = 0.005
 = 1
 = 0
𝑡1max = 204.08ms

 = 1
 = 0
 = 0
 = 0
𝑡1max = 400ms

 = 1
 = 9.6
 = 0.08
 = −13.0
𝑡1max = 111.64ms

 = 1
 = 190
 = 0.008
 = −195
𝑡1max = 48.73ms

𝑦up  = 0
 = 0.27
 = 0.6
 = 0.5
𝑡1max = 0ms

 = 0
 = 0.5
 = 0.6
 = 0
𝑡1max = 0ms

 = 0
 = 0.28
 = 0.7
 = 1
𝑡1max = 0ms

 = 0
 = 0.3
 = 0.69
 = 1.1
𝑡1max = 0ms

 = 0
 = 0.33
 = 0.7
 = 1.1
𝑡1max = 0ms

Interneurons

200 pA 400 pA 600 pA 800 pA 1000 pA

𝑦low  = 1
 = 0.011
 = 1
 = −0.286
𝑡1max = 120ms

 = 1
 = 0
 = 0
 = 0
𝑡1max = 400ms

 = 1
 = 0
 = 0
 = 0
𝑡1max = 400ms

 = 1
 = 12.05
 = 0.1
 = −17.5
𝑡1max = 72.75ms

 = 1
 = 0.011
 = 1
 = 0.556
𝑡1max = 40ms

𝑦up  = 0
 = 1.3
 = 0.428
 = −1
𝑡1max = 0ms

 = 0
 = 0.14
 = 1
 = 3.2
𝑡1max = 0ms

 = 0
 = 0.2
 = 1
 = 3.0
𝑡1max = 0ms

 = 0
 = 0.22
 = 1
 = 4.0
𝑡1max = 0ms

 = 0
 = 0.135
 = 1
 = 5.0
𝑡1max = 0ms
Fig. S.1. Plot of the derivative (26) as function of 𝑡 − 𝑡0 obtained imposing the
conditions (13) with a step of 0.01 for both parameters 𝛽 and 𝛿.

for CA1 pyramidal neurons and interneurons. Our method relies on the
simulation of neuron firing dynamics by means of the A-GLIF modeling
framework, because of its ability to effectively capture such dynamics
(and being computationally efficient), and of its analytical properties
(which allow to control the copies firing behavior).

The neuron copies can be obtained by varying the 12 parameters
of any given optimized model via scaling factors which, through a
validation procedure, ensure that their firing properties remain within
the observed experimental ranges. The parameters which can be po-
tentially modified here are the initial conditions relative to the A-GLIF
Cauchy problems (3 parameters), the Monod parameters defining the
update value of the adaptation current (2 parameters), the firing blocks
parameters determining the time interval in which the Monod function
should be defined (6 parameters), and the internal nondimensional
parameter 𝛼. These alterations lead to changes in both the spike times
and the number of spikes, as summarized in Table 2.

The generation procedure introduced here allows to obtain an arbi-
trarily large number of heterogeneous neuron copies with a predictable
dynamical behavior and falling within the experimental ranges of CA1
pyramidal neurons and interneurons. We provide approximately 1.2
millions (more precisely 1,178,268) predetermined copies (including
15
the computed spike times) in a JSON database which can be down-
loaded from the live paper section of EBRAINS (see Fig. 13). Among
these, 1,054,227 copies (approximately 89% of the total) are correctly
classified as pyramidal neurons/interneurons.

In principle, other methods to generate copies can be implemented
based, for example, on a random search of the entire parameter space.
However, this type of approach would more easily result in the majority
of copies producing unphysiological firing patterns. We have preferred
to use a more conservative approach in which we perturbed individual
parent optimizations in a controlled manner, ensuring a much more
reliable implementation of copies.

Further experimental data, also related to other types of neurons,
will allow us, in the future, to broaden such database and extend
our approach to construct neural networks for different brain areas as
well.

Supporting information

S1 Fig. Plot of the derivative of 𝑉 with respect to 𝐼0dep
S2 Fig. Spike number as function of time for the pyramidal cell
95912006 on varying 𝐼 startadap .

S3 Fig. Spike number as function of time for the pyramidal cell
95817008 on varying 𝜂

S4 Fig. Plot of the Monod functions for the pyramidal cell 95824006
on varying the parameter 𝜂.

S5 Fig. Plot of the Monod functions for the pyramidal cell 95824006
on varying the parameter 𝑐

S6 Fig. Spike number as function of time for the pyramidal cell
95817008 on varying 𝑐

S7 Fig. Number of spikes as function of the constant stimulation
currents

S8 Fig. Spike number as function of time for the interneuron
99111001 on varying different parameters
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Fig. S.2. Spike number as a function of time for the pyramidal cell 95912006 (black curves and dots) and for 5 neuron copies (colored curves and dots) obtained by fixing the
numerical values of all parameters except 𝐼 start

adap . For each current 𝐼stim we set max 𝐼 start
adap = 𝛼∕𝛽 + 𝐼 start

dep (𝐼stim − 𝐼th)𝜃(𝐼stim − 𝐼th). The gray areas cover the experimental regions of the
data. The inset in each panel represents the original simulation of the firing dynamics compared with the copy corresponding to the max 𝐼 start

adap .
Temporal shift of all spikes at nondimensional level

We consider variations in the dimensional parameters 𝐶𝑚, 𝑘2, 𝑘1,
and 𝜏𝑚 (whose values are again derived from optimization procedures)
such that 𝛼, 𝛽, and 𝛿 remain constant. Moreover, we adopt the same
notation of Section 3.1.3 regarding ‘‘old’’ and ‘‘new’’ parameter values.

In this case, we assume 𝐶𝑛
𝑚 = 𝐶𝑜

𝑚
𝑝 , 𝑘𝑛1 = 𝑝 𝑘1◦, 𝑘𝑛2 = 𝑝 𝑘2◦, and 𝜏𝑛𝑚 = 𝜏𝑜𝑚

𝑝 ,
leading to 𝜏𝑛 = 𝜏𝑜

𝑝 while 𝛼, 𝛽, and 𝛿 do not change. Therefore, in this
scenario the threshold current 𝐼th also remains constant. This implies
that both the stability conditions (13) and the conditions in Eq. (14) are
automatically verified. In this scenario, the sole variation of the copies
firing dynamics lies in the (nondimensional) 𝐼𝑆𝐼s as follows:

1. for 𝑝 < 1 we have 𝑡𝑛 = 𝑝 𝑡
𝜏𝑜 < 𝑡𝑜, therefore the (nondimensional)

temporal dynamics are shrinking;
2. for 𝑝 > 1 we have 𝑡𝑛 = 𝑝 𝑡

𝜏𝑜 > 𝑡𝑜, therefore the (nondimensional)
temporal dynamics are dilating.
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We remark that the changes on 𝜏 outlined above only affect the
nondimensional time scalings; consequently, although they might lead
in the case 𝑝 < 1 to a reduced computational cost to reproduce the
same firing patterns of the original neuron, they will leave the curves
corresponding to dimensional firing dynamics unaffected .

A priori validation for the perturbation of max 𝐼 startadap and 𝐼 startdep

The procedure mentioned in Section 3.2 is based on pre-selecting
at least 4 scaling factors for the corresponding parameter, according
to which the first spike time is calculated. This allows us to construct
an interpolating function by associating coefficient values to their
corresponding time of first spike. Taking into account the experimental
boundaries available for each stimulation current, it is possible to
identify the range of admissibility values for the parameter scaling
factors (see Supp. Fig. S.9). These bounds are defined as piecewise
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Fig. S.3. Spike number as a function of time for the pyramidal cell 95817008 (black curves and dots) and for 7 neuron copies (colored curves and dots) obtained by fixing all
parameters except 𝜂 in the Monod function (16). The inset in each panel represents the original simulation compared with the copy corresponding to 70 𝜂.

Fig. S.4. Plots of the Monod function (16) for the pyramidal cell 95824006 (red) and for the perturbed functions (blue and green) obtained on varying the parameter 𝜂. For each
𝐼stim we set 𝐼max

adap =
𝛼
𝛽
+ 𝐼0

dep +
𝛿
𝛽
(1 + 𝑉 0). In all cases 𝑎 > 0.
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Fig. S.5. Plots of the Monod function (16) for the pyramidal cell 95824006 (red) and for the perturbed functions (blue and green) obtained on varying the parameter 𝑐. For each
𝐼stim we set 𝐼max

adap =
𝛼
𝛽
+ 𝐼0

dep +
𝛿
𝛽
(1 + 𝑉 0). In all cases 𝑎 > 0.
Fig. S.6. Spike number as a function of time for the pyramidal cell 95824006 (black curves and dots) and for 6 neuron copies (colored curves and dots) obtained by fixing all
parameters except for 𝑐 in the Monod function (16). The inset in each panel represents the original simulation compared with the copy corresponding to 0.5 𝑐.
curves

𝑦 =

{

 if 0 ≤ 𝑡 ≤ 𝑡1max,
 1

(36)
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 𝑡 +  if 𝑡max < 𝑡 ≤ 400 ms,
where 𝑦 represents the number of spike, 𝑡 the time, and 𝑡1max(𝐼stim) is
the largest time supporting a single spike for the constant stimulation
current 𝐼stim.



Mathematical Biosciences 371 (2024) 109179A. Marasco et al.
Fig. S.7. Number of spikes as function of different constant currents (black curves and dots) for three pyramidal neurons (left column) and three interneurons of bAC, cAC and
cNAC type (right column, top, middle, and bottom, respectively) and for some copies (colored curves and dots) obtained by fixing the numerical values of all parameters except
the ones indicated in the legends.
In particular, 𝑦low (resp. 𝑦up) is the curve bounding the experimental
region from below (resp. above) in the space of spike numbers vs time.
The values of the coefficients  , ,  , , together with 𝑡1max(𝐼stim), are
provided in Table S.1. The final interval of admissibility for max 𝐼 startadap
and 𝐼 startdep is then obtained by intersecting the intervals related to the
different constant stimulation currents considered. We note that the
admissibility ranges for max 𝐼 startadap and 𝐼 startdep vary for each reference
neuron we use for the copies generation procedure.

Code availability. All model and simulation files will be available in the
live papers section of EBRAINS (https://live-papers.brainsimulation.
eu/).
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Fig. S.8. Spike number as a function of the spike times for the interneuron 99111001 (black curves and dots) and for 108 neuron copies (colored curves and dots) obtained from
the former by varying the parameters as follows: ℎ max 𝐼 start

adap where ℎ = 0, 1; 𝑚𝐼 start
dep , where 𝑚 = 1, 10; 𝑛 𝐼0

dep where 𝑛 = 0.001, 0.5, 1; 𝑝 𝑐 where 𝑝 = 0.1, 1, 4; 𝑞 𝜂 where 𝑞 = 0.25, 1, 2.5.
The original model is obtained by setting ℎ = 0, 𝑚 = 𝑛 = 𝑝 = 𝑞 = 1 (black curves and dots).
Fig. S.9. A priori validation procedure for the admissible range of the scale factors for 𝐼 start
dep . Top: (left) spike number as a function of the spike times at a current of 1000

pA for the pyramidal cell 95817008 (black curves and dots) and for 4 neuron copies (colored curves and dots) obtained by fixing the numerical values of all parameters except
𝐼 start
dep ; (right) determination of the range of admissible scale factors for 𝐼 start

dep for the stimulation current of 100pA. Bottom: determination of the range of admissible scale factors
for 𝐼 start

dep valid for all stimulation currents.
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