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A B S T R A C T   

Cyanotoxins are by definition “harmful agents” produced by cyanobacteria. Their toxicity has been extensively 
studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous 
effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering 
their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a 
broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, 
biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, 
indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary 
mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological 
activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their ap-
plications both in medical and in industrial settings, even if only a few of these have reached the biotech market. 
In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, 
as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, 
we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antith-
rombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to 
stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to 
facilitate the discovery of innovative biotechnologies.   

1. Introduction 

1.1. Biology and ecology of cyanobacteria 

Cyanobacteria, otherwise known as blue-green algae, are a wide and 
heterogeneous group of prokaryotic organisms described as the most 
ancient photoautotrophs, with the broadest geographical distribution on 
Earth (Gaysina et al., 2019). Cyanobacteria reached this success through 
various trajectories of adaptive evolution, which enabled them to live 
both in aquatic and terrestrial ecosystems and to survive, under a wide 
range of environmental stresses, in extreme environments like hot 
springs, polar regions and desert soils (Billi et al., 2017; Kvíderová et al., 
2019; Alcorta et al., 2020). 

Cyanobacteria metabolic plasticity is due, to a large extent, to their 
ancient origin in an anoxic biosphere of the Early Earth and their initial 

capability of growing in a scarcity of fundamental nutrients (Schirr-
meister et al., 2016; Reinhard et al., 2017; Zerkle et al., 2017). Later, 
with the atmospheric changes occurred during the Great Oxidation 
Event (GOE), early cyanobacteria developed specific metabolic path-
ways to adapt to variable conditions of light, temperature and macro- 
and micro-nutrients availability (de Marsac and Houmard, 1993). These 
peculiar pathways are not included in their primary metabolism, which 
is mainly involved in the regulation of essential functions such as 
growth, development and reproduction. Conversely, secondary meta-
bolism mainly refers to those mechanisms necessary for cyanobacteria 
survival, involved, for example, in UV-light protection, prevention of 
oxidative stress (Sinha and Häder, 2008; Latifi et al., 2009), or compe-
tition for light and nutrients with other sympatric species (Mur et al., 
1999). 

In aquatic environments, cyanobacteria may be found free-living in 
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the water column or associated to other micro- and macroorganisms, 
forming for example benthic mats, whereas terrestrial cyanobacteria are 
often associated to soil crusts, which mainly colonize dryland areas 
(Büdel et al., 2016; Huisman et al., 2018; Vidal et al., 2021). This 
capability of establishing ecological relationships (including symbiosis) 
with a range of organisms allowed cyanobacteria to evolve different 
mechanisms to promote maximum advantages from and for the host (Rai 
et al., 2002). 

Most of these forms of life are to be considered as complex com-
munities, where several taxa cohabit in a dynamic equilibrium. Often 
the winning competition for nutrients, oxygen and light, facilitated by 
the release of secondary metabolites, make cyanobacteria dominant in 
aquatic communities. Such metabolites may be defined as “alle-
lochemicals” (from the Greek ἀλλήλων, allēlōn, meaning “mutual”, 
“reciprocal”), a term which indicates compounds involved in the 
competitive interactions between organisms; and the biological phe-
nomenon that defines this behaviour is referred to as “allelopathy” 
(McCoy et al., 2022). 

The first definition of allelopathy was given by Hans Molisch in 
1937, a Czech-Austrian botanist who observed how early-ripening fruits 
can induce maturation of late-ripening fruits when stored together. He 
first used this term to define the phenomenon of mutual influence be-
tween one plant and another (Molisch, 1937). The concept was further 
adopted, in a broader vision, to define “any direct or indirect harmful or 
beneficial effect by one organism on a another through production of 
chemical compounds that escape into the environment” (Rice, 1984). 
Consequently, the active release of allelochemicals can exert a direct or 
indirect effect on the surrounding biota, influencing their growth, 
physiology and behaviour (Leflaive and Ten-Hage, 2007; Leão et al., 
2009). 

Cyanobacteria are often found in fast-growing aquatic biomasses, 
compared to other photoautotrophs, releasing a set of allelochemical 
weapons that dominate the space in highly competitive environments. 
This is a phenomenon known under the name of “harmful algal blooms” 
(HAB) (Dias et al., 2017), which may be harmful for humans, animals, 
plants and other cohabiting organisms. Generally, various environ-
mental factors concur to such cyanobacterial proliferation, such as high 
nitrogen and phosphorous content, light intensity and temperature 
trends (Paerl, 2017). This explains why climate changes, along with 
water pollution, may contribute to the exacerbation of eutrophication 
and, consequently, of cyanobacteria blooms (Huisman et al., 2018; 
Nazari-Sharabian et al., 2018; Gobler, 2020). In this perspective, the 
multitude of toxic compounds produced by cyanobacteria are referred to 
as cyanotoxins, which have been studied both from a toxicological and a 
biological perspective (Chorus and Bartam, 1999). 

1.2. Toxicity of cyanobacteria 

The first documentation of cyanobacterial toxicity was reported by 
George Francis (1878), a South Australian chemist who conducted 
pioneering studies on the quality of drinking water. He reported epi-
sodes of animal poisonings occurring as a consequence of drinking from 
Lake Alexandrina in South Australia, with initial symptoms such as 
unconsciousness and stupefaction, followed by convulsions, spasms and 
finally death. The organism responsible was identified by Francis as 
Nodularia spumigena, a bloom-forming diazotrophic green-blue alga, 
subsequently reported as producer of the toxin nodularin (Rinehart 
et al., 1988). 

Later, many other species were discovered and identified as toxin- 
producing cyanobacteria, such as Microcystis spp., Anabaena spp., Oscil-
latoria spp., Nostoc spp., and Lyngbya spp. among others (Carmichael, 
2001; Cheung et al., 2013; Buratti et al., 2017; Metcalf and Codd, 2020). 

Over the years, most research has focused on understanding the 
mechanisms underpinning the physiological regulation and the biolog-
ical functions of cyanotoxins (Sivonen and Jones, 1999; Humbert, 2009; 
Pearson et al., 2016; Sanseverino et al., 2017). They are commonly 

classified as secondary metabolites, but their role in growth, develop-
ment and reproduction is still not fully clarified (Carmichael, 1992; Orr 
and Jones, 1998; Yunes, 2019). It has been hypothesized that they have 
evolved in peculiar environmental conditions to override other species 
in very competitive habitats or, in other contexts, it has been assumed 
that they evolved to aid general physiological functions, such as main-
tenance of homeostasis, iron scavenging or cell-cell signalling (Holland 
and Kinnear, 2013). 

However, to date, the original ecological role of cyanotoxins is still a 
matter of debate. Conversely, their toxicological role has been thor-
oughly defined. Numerous research articles and systematic reviews have 
been published reporting cyanobacteria as dangerous toxin producers, 
describing cyanotoxins harmful effects, or focusing on the development 
of strategies for their monitoring and removal from various environ-
ments (Wang et al., 2021; Abdallah et al., 2021; Serrà et al., 2021; 
Miglione et al., 2021; Lei et al., 2022). 

What is not yet widely accepted is the concept that most of the toxins 
produced by cyanobacteria have powerful biological activities that may 
be worth exploiting in agriculture, pharmacology, cosmetology, and 
many other industrial fields. 

In this review, we offer a renewed vision of cyanotoxins, for years 
pointed out only as harmful agents. Here, several classes of cyanotoxins 
known so far have been reviewed regarding their origin, isolation, 
chemical structures, and mechanisms of toxicity on mammals. In addi-
tion, their potential biotechnological applications, both for industrial 
and medical scopes, are discussed. 

2. Cyanotoxins 

Over the years, cyanotoxins have been grouped into a few different 
classes on the basis of their toxicity (neurotoxins, dermatotoxins, hep-
atotoxins, cytotoxins) (Humbert, 2009; Metcalf and Codd, 2014; San-
severino et al., 2017; Machado et al., 2018) or based on their chemical 
nature (alkaloids, cyclic peptides, lipopolysaccharides) (Chorus and 
Bartam, 1999; van Apeldoorn et al., 2007). In this review, we provide a 
broader subdivision of cyanotoxins into eight main classes (Fig. 1), 
considering their molecular structures, biosynthesis and modes of 
action. 

2.1. Alkaloids 

Alkaloids represent the most abundant class of defensive secondary 
metabolites. More than 27,000 alkaloids are currently known in nature 
(Parthasarathy et al., 2021) endowed with a wide range of applications 
in pharmaceutical, medical, and agricultural settings (Aniszewski, 
2015). Depending on their molecular structure and origin, they are in 
turn classified into true alkaloids, protoalkaloids and pseudoalkaloids 
but, in general, they all possess a cyclic backbone that contains nitrogen 
in a negative oxidation state (Pelletier, 1983). 

Alkaloid cyanotoxins are mainly represented by anatoxins (ATXs) 
and saxitoxins (STXs), also known as neurotoxins, because of their pri-
mary effects related to the nerves and the muscles they control (Chris-
tensen and Khan, 2020), and cylindrospermopsins (CYNs), identified 
more in general as cytotoxins, due to their multiple toxicity on liver, 
kidney and nervous system, which is probably a direct consequence of 
their wide distribution through body tissues and organs (Mathe et al., 
2017). 

As for their chemical nature, anatoxin-a (Fig. 2) is an asymmetrical 
bicyclic secondary amine (Devlin et al., 1977), and so as its analogue, 
homoanatoxin-a, which differs from anatoxin-a only for an additional 
methyl group on the carbon 11 (Wonnacott et al., 1992). Whereas 
saxitoxin, also known as paralytic shellfish poisoning (PSP) toxin, is 
constituted by a tricyclic perhydropurine backbone, and cylin-
drospermopsin consists of a polycyclic uracil derivative containing 
guanidin and sulfate groups (Fig. 2). 

Anatoxin-a and homoanatoxin-a act as potent agonists of the 
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muscular and neuronal nicotinic acetylcholine receptor (nAChR). Their 
binding to this ionotropic receptor leads to the opening of the channel 
and thus to the flow of cations (K+, Na+, Ca2+), provoking the depo-
larization of the cell membrane (Bruno et al., 2016; WHO, 2020a). 
Saxitoxins, instead, behave as blockers of the voltage-gated sodium 
channels (VGSCs) in neuronal cells, thus inhibiting propagation of an 
action potential along neuronal axons, or rather reducing or eliminating 
the transmission of a nerve impulse (Evans, 1969; Thottumkara et al., 
2014; WHO, 2020b). 

Despite their different molecular properties and modes of action, 
ATXs and SXTs share the same acute neuroxicity when ingested, causing 
similar symptoms of paralysis and respiratory failure. 

On the other hand, cylindrospermopsins show a wide range of toxic 
effects. Even if the liver is the main target, other organs, such as intes-
tinal tract, kidney, spleen, and thymus may be affected. Although not 
clearly understood, more than one mode of action could be involved in 
cylindrospermopsins toxicity (Evans and Murphy, 2011; WHO, 2020c). 
Inhibition of protein synthesis seems to be the primary mechanism of 
their activity, but some others have also been reported, such as inhibi-
tion of glutathione synthesis, DNA damage, induction of oxidative stress 
(Froscio et al., 2003; Humpage et al., 2005). 

2.2. Non-ribosomal peptides 

Non-ribosomal peptides (NRPs) are synthetized by a specific non- 
ribosomal peptide synthetase (NRPS) enzyme complex in an RNA- 
independent synthetic pathway (Neilan et al., 1999). NRPs are small 
molecular weight cyclic hepta- and penta- peptides (Carmichael et al., 
1988), among which microcystins (MCYSTs) and nodularins (NODLNs) 

are the class leaders. 
MCYSTs are the most abundant class of cyanobacterial toxins, with 

almost 300 congeners already identified (Bouaïcha et al., 2019). Their 
general chemical structure is a cyclo-(D-Ala-X-D-Masp-Z-Adda-D-Glu- 
Mdha), where X and Z are variable L-amino acids. Whereas NODLNs 
share the same cyclic peptide structure but lack the two sites for the 
variable L-amino acids (Rinehart et al., 1988). As an example, the 
structures of microcystin-LR (L-Leu and L-Arg as X and Z) and nodularin 
are reported in Fig. 3. 

MCYSTs and NODLNs act as inhibitors of the serine/threonine pro-
tein phosphatase families PP1 and PP2A, leading to hyper-
phosphorylation of functional and cytoskeletal proteins, followed by cell 
process alterations (cell-cell adhesion, actin filaments structuring, 
MAPKs signalling) and finally apoptosis (Yoshizawa et al., 1990). 
Moreover, they are pro-oxidants with the potency to induce cell 
damaging oxidative stress through generation of reactive oxygen species 
(ROS), with subsequent genotoxic effects such as DNA fragmentation, 
chromosomal aberrations or base substitution mutations (Bouaïcha and 
Maatouk, 2004). Their high hepatotoxicity is not strictly related to the 
mechanism of action, but rather to their distribution to the tissues 
(WHO, 2020d). In fact, due to their relatively large and bulky structures, 
MCYSTs and NODLNs are unable to cross cell membranes by passive 
diffusion, and require active uptake by cells, by means of organic anion 
transporters polypeptides (OATPs), in particular OATP1B1 and 
OATP1B3 which, in healthy humans, are found to be largely expressed 
in liver tissue (Fischer et al., 2005; Hagenbuch and Gui, 2008). 

Peptides other than MCYSTs and NODLNs have been poorly 
explored, and information is lacking on their ecological role, toxicity, 
and impact on human health. Among these, anabaenopeptins (APs), a 

Fig. 1. Cyanotoxins subdivision in classes with main representatives.  

Fig. 2. Chemical structures of alkaloid cyanotoxins: 1) anatoxin-a, 2) cylindrospermopsin, 3) saxitoxin.  
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family of cyclic peptides composed by six amino-acid residues (see 
anabaenopeptin B structure in Fig. 4), have lately received increasing 
attention (Spoof et al., 2015; Monteiro et al., 2021). APs are well known 
for their inhibiting activity of carboxypeptidases, phosphatases and 
proteases (Itou et al., 1999; Sano et al., 2001; Gesner-Apter and Carmeli, 
2009), enzymes generally involved in the regulation of several vital 
physiological and metabolic processes. APs toxicological effects have 
only been reported in the model nematode Caenorhabditis elegans (Lenz 
et al., 2019), but whether these observed toxic effects are related to the 
known enzyme inhibition properties of these cyanopeptides remains to 
be elucidated. 

Recently, several new depsipeptides (peptides with an ester linkage) 
from cyanobacteria have been characterised. Belonging to this class, 
lyngbyabellins (LYBs) are cyclic or linear cytotoxic depsipeptides, 
characterized by two thiazole rings and a peculiar gem-dichloro group 
(CCl2) (see lyngbyabellin A structure in Fig. 4) (Choi et al., 2012). LYBs 
act as actin-disassembling agents, therefore as disrupters of the cellular 
microfilament network. In particular, they were reported to inhibit 
cytokinesis inducing alterations in cell morphology (Luesch et al., 
2000a; Han et al., 2005). 

2.3. Polyketides 

Generally, polyketides represent a huge class of natural products 
sharing a common mechanism of ribosome-independent biosynthesis 
involving a class of enzymes called polyketide synthases (PKSs). Despite 
aplysiatoxins (APTXs) represent a distinct polyketide class of toxins 

isolated from several cyanobacterial species, their biosynthetic pathway 
has not been elucidated so far. It was proposed to be related to the 
formation of a pyran ring system, with high level of methylation, and the 
combination of two polyketide units to form a macrolactone (see aply-
siatoxin structure in Fig. 5) (Tidgewell et al., 2010). Aplysiatoxin and 
debromoaplysiatoxin are classified as dermatotoxins, since they induce 
potent skin irritation through the activation of protein kinase C (PKC), 
thus causing rashes and skin blisters (Osborne et al., 2001). Moreover, 
since PKC have important roles in cell-cycle regulation, its excessive 

Fig. 3. Chemical structures of peptide cyanotoxins: 4) microcystins-LR, 5) nodularin.  

Fig. 4. Chemical structures of peptide cyanotoxins: 6) anabaenopeptin B, 7) lyngbyabellin A.  

Fig. 5. Chemical structures of polyketide cyanotoxin: 8) aplysiatoxin.  
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activation can lead to carcinogenesis. In fact, APTXs are also reported as 
strong tumor-promoting factors (Horowitz et al., 1983). 

2.4. Non-protein amino acids 

β-N-methylamino-L-alanine (BMAA) and its naturally occurring iso-
mers belong to the class of non-protein amino acidic (NPAA) toxins. 
They are non-canonical amino acids. Indeed, although they contain an 
amino- and a carboxyl- group, they do not take part in protein synthesis. 
BMAA is actually an alanine, but with a methylamino group on the side 
chain, whereas its two most studied constitutional isomers, 2,4-diamino-
butyric acid (DAB), N-(2-aminoethyl) glycine (AEG), basically exhibit 
the same molecular structure, but different connectivity (Fig. 6) (Jiang 
et al., 2012). BMAA was first identified as the causative agent of 
amyotrophic lateral sclerosis/Parkinsonian-dementia complex (ALS/ 
PDC) (Vega and Bell, 1967; Spencer et al., 1987; Cox et al., 2003), a 
neurodegenerative disease frequently occurred among the Chamorro, 
indigenous population of the small Pacific Island of Guam, in the 1950s 
(Arnold et al., 1953). BMAA neurotoxic activity involves different tar-
gets through several mechanisms which add up to favour the develop-
ment of neurodegenerative processes. Once in the human body, BMAA 
tends, in presence of bicarbonate ions (HCO3

− ), to form carbamate ad-
ducts structurally similar to glutamate, therefore acting as glutamate 
receptor agonists (Weiss et al., 1989; Rao et al., 2006). The activation of 
glutamate receptors, both ionotropic (iGluRs) and metabotropic 
(mGluRs), induces a significant increase in intracellular Ca2+, which 
promotes reactive oxygen species (ROS) generation, degradation of 
proteins, lipids, and nucleic acids, loss of neuronal function and cell 
death (Chiu et al., 2012). This neurotoxic cascade is defined excitotox-
icity (Armada-Moreira et al., 2020), which is the most accredited BMAA 
mechanism of action, but not the only one. In fact, BMAA was also re-
ported to accumulate into brain tissues by associating with host proteins, 
as a consequence of a misincorporation of BMAA into the primary 
structure of proteins, in the place of L-serine, or more likely by a direct 
BMAA-protein interaction, thus triggering protein misfunction, mis-
folding and/or aggregation (Glover et al., 2014; van Onselen et al., 
2015). Although the molecular mechanisms of neurotoxicity remain to 
be elucidated, its neurodegenerative effects are well ascertained, even if 
the association between BMAA exposure and susceptibility to neurode-
generative diseases is still a current matter of study. 

2.5. Indole alkaloids 

Indole alkaloids are a class of alkaloids structurally consisting of a 
highly functionalized polycyclic ring system based on an indole core 
(Walton and Berry, 2016). Lyngbyatoxins (LTXs) are the main repre-
sentatives of indole alkaloid toxins, constituted by an indolactam and a 
monoterpenoid moiety (Cardellina 2nd et al., 1979). Lyngbyatoxin-a 
(Fig. 7), identified as the causative agent of seaweed dermatitis from 
the Hawaiian Lyngbya majuscule, is a highly inflammatory and ves-
icatory skin irritant, therefore defined as dermatotoxin. The mechanism 
of action, through which LTXs exert their toxicity, is similar to that of 
aplysiatoxins, which involves activation of PKC. LTXs was also reported 
to have a tumor-promoting activity comparable to that of 12-O-tetrade-
canoylphorbol 13-acetate (TPA) in vivo (Fujiki et al., 1984). 

Newly discovered, hapalindoles (HIs) include a diversified group of 

indole alkaloids derivatives, with tetra- and tricyclic core ring systems 
(see hapalindole H structure in Fig. 7). Given the evidence on their so-
dium channel-modulating activity, hapalindoles can be defined as full- 
fledged neurotoxins. Their toxicity is reported to be similar to that of 
neo-saxitoxin, and may be related to ion-dependent disturbances of 
excitable membranes, with a subsequent blocking of axonal conduction, 
and interruption of the propagation of nerve impulses (Cagide et al., 
2014). They are also precursors for the so-called hapalindole-type al-
kaloids, and namely hapalindolinones, ambiguines, fischambiguines, 
fischerindoles and welwitindolinones, characterized by very complex 
structures and interesting biological activities (Hohlman and Sherman, 
2021). 

2.6. Organophosphates 

The only member of this class of cyanotoxins is anatoxin-a(s) (ATX-a 
(s)), a guanidinium methyl phosphate ester (Fig. 8) (Matsunaga et al., 
1989). Initially known as a neurotoxic alkaloid, it has been grouped with 
anatoxins. Recently, given the substantial differences in the chemical 
structure, mechanism of action and biosynthesis, it has been renamed 
guanitoxin (GNT) (Fiore et al., 2020), to emphasize its distinctive gua-
nidine organophosphate chemical structure. GNT acts as an irreversible 
inhibitor of acetylcholinesterase (AChE), by a similar mechanism as the 
organophosphates and carbamate insecticides (Mahmood and Carmi-
chael, 1986, 1987). The enzymatic inhibition occurs through a covalent 
bond between the serine residue of acetylcholinesterase and the phos-
phate group of the toxin, which leads to inhibition of acetylcholine 
(ACh) recycling and its subsequent accumulation. As a consequence, 
ACh remains available and binds membrane receptors of the peripheral 
nervous system, resulting in continuous muscle stimulation, thus leading 
to convulsions, muscle fatigue, and respiratory arrest (Patočka et al., 
2011). 

2.7. Lipopeptides 

Lipopeptides are molecules composed by peptide and fatty acid 
chains bound together. Those produced by cyanobacteria include cyto-
toxic lipopeptides with linear and cyclic structures (intracyclic or 
exocyclic lipopeptides) (Fewer et al., 2021). Anabaenolysins (ABLs) are 
cytotoxic cyclic lipopeptides (see anabaenolysin A structure in Fig. 9), 
consisting of a four-membered peptide ring, composed by two protei-
nogenic amino acids (glycine, glycine) and the unusual 2-(3-amino-5- 
oxotetrahydrofuran-2-yl)-2-hydroxyacetic acid moiety, and of a long 
unsaturated C18 β-amino fatty acid with a conjugated triene structure 
(Jokela et al., 2012). Their amphipathic structure is the key factor of 
their cytotoxicity. In fact, they act as biodetergents, by penetrating 
cholesterol-containing cell membranes, inducing membrane destabili-
zation and cell lysis (Oftedal et al., 2012). 

Another class of lipopeptide toxins are Antillatoxins (ANTXs), clas-
sified as neurotoxins because of their action on neuronal VGSCs (Aráoz 
et al., 2010). ANTXs possess a cyclic tripeptide backbone bonded 
together with a highly methylated lipid portion (see antillatoxin B 
structure in Fig. 9). Unlike other neurotoxins, they act as activators of 
neuronal VGSCs. The ensuing increase of intracellular Na+ provoke 
overstimulation of N-methyl-D-aspartate receptor (NMDARs). The 
abnormal activation of this class of ionotropic glutamate receptors is 

Fig. 6. Chemical structures of NPAA cyanotoxins: 9) BMAA, 10) DAB, 11) AEG.  
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involved in triggering excitotoxicity, provoking swelling of neuronal 
somata, thinning of neuritis, and blebbing of the neurite membrane 
(Berman et al., 1999). 

2.8. Lipoglycans 

Belonging to the lipoglycans chemical class, lipopolysaccharides 
(LPSs) represent the most common class of toxins. LPS is a structural 
component of the outer cell membrane of gram-negative bacteria 
(including cyanobacteria), isolated from most cyanobacterial species. 
Compared to all other classes of exotoxins, which are secreted or 
released into the surrounding environment, LPSs are generally classified 
as endotoxins. 

Structurally, LPS is a complex polymer composed of three main do-
mains, the lipid A, a polysaccharide core and the O-antigen. Those of 
cyanobacteria exhibit slight structural differences compared to proteo-
bacterial LPSs, such as the lack of phosphates in the lipid A region and of 
3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and heptose residues in the 
polysaccharide portion, which, alternatively, is mainly composed by 
neutral sugars (Snyder et al., 2009; Fujii et al., 2012). These endotoxins 
generally elicit a strong immune response when in contact with the 
human body, inducing effects ranging from gastro-intestinal to respi-
ratory illnesses, from pyrexia to septic shock (Stewart et al., 2006). The 
mechanism by which proteobacterial LPSs induce inflammation is via 

Toll-like receptor 4 (TLR-4), whose activation induces significant release 
of pro-inflammatory cytokines, such as TNF-α, IL-8, IL-6 (Mazgaeen and 
Gurung, 2020). 

This is presumably what also happens in the case of cyanobacterial 
endotoxins. However, interactions of cyanobacterial LPSs with the im-
mune system are still scarcely understood and the role of structurally 
different cyanobacterial lipid A in TLR4 signalling is under investiga-
tion. It is indeed reported that some LPSs from Oscillatoria and Syn-
echococcus species (Fig. 10) possess a tetra-acylated lipid A portion 
(Snyder et al., 2009; Carillo et al., 2014; Durai et al., 2015). This peculiar 
structure allows LPS recognition by the MD2-TLR4 complex but prevents 
the dimerization and therefore the activation of the receptor, inducing 
an antagonist-like effect (Matsuura, 2013). 

3. Cyanotoxins applications for biotechnological purposes 

Several reviews have been published so far, summarizing the cya-
notoxins harmful effects on human health, animals, plants or other or-
ganisms with which they can come into contact in the environment 
(Carmichael, 1992; van Apeldoorn et al., 2007; Funari and Testai, 2008; 
Ferrão-Filho Ada and Kozlowsky-Suzuki, 2011; Drobac et al., 2013; 
Buratti et al., 2017; Metcalf and Codd, 2020; Plaas and Paerl, 2021), but 
less information has been reported about their biotechnological poten-
tial uses. Recently, Demay et al. (2019) described the beneficial activ-
ities of natural products from cyanobacteria, including ten different 
chemical classes of molecules, without explicitly distinguishing between 
cyanotoxins and other non-toxic metabolites. A similar approach was 
adopted by Khalifa et al. (2021), and Abed et al. (2009) about ten years 
earlier, who have reported the biotechnological applications of cyano-
bacteria as cell factories and their bioactive compounds, only 
mentioning a few classes of cyanotoxins. In order to highlight the scarce 
attention of the scientific community on the potential biotechnological 
applications of cyanotoxins, we conducted a bibliometric analysis of 
papers considering cyanotoxins as the main topic, published during the 
last 10 years, reporting the twenty most frequent research fields of in-
terest (Fig. 11). 

The literature available on cyanotoxins covers more than 100 
research areas, even though most of the papers remain in the field of 
environmental sciences and ecology, whereas just over 10% are in the 
field of biotechnology and applied microbiology. Here, we focused only 

Fig. 7. Chemical structures of indole alkaloid cyanotoxins: 12) lyngbyatoxin A, 13) hapalindole H.  

Fig. 8. Chemical structures of organophosphate cyanotoxin: 14) guanitoxin.  

Fig. 9. Chemical structures of lipopeptide cyanotoxins: 15) anabaenolysin A, 16) antillatoxin B.  
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on cyanobacteria-derived compounds hitherto labelled as “toxic”, but 
highlighting their beneficial effects in clinical settings and their poten-
tial biotechnological applications. In detail, several cyanotoxins with 
anticancer, antimicrobial, biocidal and other biomedical applications 
were searched in the literature, organized according to their mechanism 
and bioactivity, as reported in Table 1. 

3.1. Anticancer 

The first evidence that cyanobacteria were able to produce com-
pounds endowed with anticancer activity was provided by Mynderse 
et al. (1977). They first examined the antileukemia activity of several 
species of the Oscillatoriaceae family, testing their chloroform extracts on 
the P-388 murine leukemia cell line. The purification of the extracts and 
the characterization of the obtained active fractions led them to isolate 
the P-388 active compound, i.e., debromoaplysiatoxin (Fig. 12), the 
same compound allegedly responsible for dermal toxicity of Lyngbya 
species (Grauer and Arnold Jr, 1961), later confirmed by Solomon and 
Stoughton (1978). From this study as a starting point, Kashiwagi et al. 
(1980) examined the antineoplastic effects of crude extracts obtained 
from 107 specimens of marine algae collected off the Pacific Islands, 
reporting excellent anti-proliferative activities at relatively low dosages, 
with no evidence of toxicity, on murine leukaemia and Ehrlich-Lettre 
ascites carcinoma cell lines. These studies have paved the way to-
wards a more conscious search for molecules with anticancer activity 
from cyanobacteria. Indeed, shortly thereafter Patterson et al. (1991) 

started a large-scale screening program aimed at the isolation of anti-
neoplastic agents from laboratory-cultured blue-green algae, finally 
establishing how precious cyanobacteria could be as a source of anti-
cancer drugs. 

One of the first identified anticancer cyanotoxins was curacin A 
(Fig. 12), a unique thiazoline-containing lipopeptide isolated from a 
marine Caribbean Lyngbya majuscule strain, endowed with an antimi-
totic activity against renal, colon and breast cancer cell lines (Gerwick 
et al., 1994; Wipf et al., 2004). It was found to inhibit microtubule as-
sembly with an IC50 value of 0.70 μM, selectively binding to the 
colchicine site of tubulin, and to induce cell cycle arrest at the G2/M 
phase (Gerwick et al., 1994; Verdier-Pinard et al., 1998). Due to its 
therapeutic potential, curacin A underwent early clinical trial phases 
but, unfortunately, it was ruled out because of its high lipophilicity. 
However, over the years, several attempts were made to identify curacin 
A congeners or synthetic analogues with improved water solubility and 
chemical stability, suitable for further drug development as anticancer 
agents (Yoo and Gerwick, 1995; Márquez et al., 1998; Verdier-Pinard 
et al., 1998; Wipf et al., 2002, 2004; Singh et al., 2008). 

At the same time, another antimitotic agent was isolated from cya-
nobacteria of the genus Nostoc, cryptophycin 1 (Fig. 12), a cyclic peptide 
cyanotoxin with a potent anti-proliferative activity against various 
cancer cell lines, with IC50 values lower than 50 pM (Lieberman et al., 
2001). Cryptophycin 1 interferes with microtubule assembly processes 
with a mechanism of action similar to that of Vinca alkaloids (Smith 
et al., 1994; Bai et al., 1996). In detail, it inhibits microtubule poly-
merization, causing tubulin to aggregate, and disassembles microtu-
bules to linear polymers somewhat similar to the spiral-like structures 
produced by the Vinca alkaloids (Kerksiek et al., 1995). As a conse-
quence, it hinders the formation of mitotic spindles during the cell cycle, 
thus leading to mitotic arrest (Mooberry et al., 1997). Due to its po-
tential, the research of analogues of cryptophycin, either naturally iso-
lated or chemically synthesized, has attracted the attention of the 
scientific community. Successfully, cryptophycin-52 proved to be an 
excellent synthetic candidate (Chen et al., 1998). In addition to the 
microtubule inhibition activity, it was shown to induce apoptosis by Bcl- 
2 phosphorylation in human H460 non-small-cell lung carcinoma 
(NSCLC) cell line (Lu et al., 2001). It entered a phase II clinical trial, but 
it failed to produce measurable responses and induced a significant level 
of neurotoxicity, and therefore was not approved for clinical use 
(Edelman et al., 2003). However, cryptophycins have stood out for their 
potential use in targeted therapeutic approaches and have been recently 
involved in the development of antibody-drug conjugates (ADCs) and 
small molecule-drug conjugates (SMDCs). These latter showed no 
toxicity, improved stability in plasma and high selective anticancer ef-
fects, demonstrating their potential for the targeted therapy of solid 
tumors (Verma et al., 2015; Borbély et al., 2019; Lai et al., 2020; Anselmi 
et al., 2021). 

Apratoxins represent another class of anticancer cyclic peptide cya-
notoxins lately discovered from Lyngbya sp. (Luesch et al., 2001a). 
Apratoxin A (Fig. 12) prevents the biogenesis of secretory and mem-
brane proteins, inhibiting cotranslational translocation into the endo-
plasmic reticulum (ER), by direct blockade of the Sec61 protein 
translocation channel (Liu et al., 2009; Paatero et al., 2016). It showed 
cytotoxicity against human osteosarcoma, colorectal and cervix adeno-
carcinoma, and breast, ovarian endometrial and pancreatic cancer cell 
lines (IC50 0.36–18.6 nM) (Luesch et al., 2001a; Luesch et al., 2006; Ma 
et al., 2006; Huang et al., 2016). Apratoxin D and E were also isolated 
from different Lyngbya species, showing a higher and a lower anticancer 
activity, respectively, compared to their congener apratoxin A, but 
neither of them was further investigated for anticancer drug develop-
ment (Gutiérrez et al., 2008; Matthew et al., 2008). Instead, some syn-
thetic analogues have proceeded into clinical trials. For instance, 
apratoxins S10 was proved to induce a clear reduction of cancer pro-
liferation through down-regulation of multiple receptor tyrosine kinases 
(RTKs), such as the vascular endothelial growth factor receptors 

Fig. 10. Chemical structures of lipid A portion from Synechococcus LPS.  
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(VEGFRs), therefore exerting a strong anti-angiogenic effect in addition 
to its potent anti-proliferative effect in highly vascularized cancer cell 
models (IC50 0.83–3.35 nm) (Cai et al., 2017). Moreover, Apra S10 also 
inhibited tumor growth in a pancreatic patient-derived xenograft (PDX) 
preclinical model, thus resulting in a potentially good candidate for the 
treatment of pancreatic cancer (Cai et al., 2019). 

Dolastatins are a family of linear peptide toxins endowed with a 
marked antimitotic activity, whose production has been initially 
attributed to the sea hare Dolabella auricularia (Bai et al., 1990; Pettit 
et al., 1993). Only twenty years later Hendrik Luesch and colleagues 
isolated dolastatin 10 (Fig. 12) from the marine cyanobacterium Sym-
ploca sp. VP642, then named symplostatin 1, suggesting that dolastatins 
isolated from the mollusc originated from a cyanobacterial diet (Luesch 
et al., 2001b). Dolastatin 10 and 15, and later their synthetic derivatives, 
Soblidotin (TZT-1027) and Cemadotin (LU103793), respectively, have 
shown very promising anticancer effects against different cancer cell 
lines, inducing depolymerization of microtubules in interphase cells 
with a subsequent formation of abnormal spindles and alteration of 
chromosome distribution in mitotic cells (Bai et al., 1990; Bai et al., 
1992; de Arruda et al., 1995; Kobayashi et al., 1997; Poncet, 1999). 
Unsuccessfully, after entering clinical trials, neither natural nor syn-
thetic dolastatins were found to be suitable for clinical use due to 
insufficient efficiency or induced peripheral neuropathy and neu-
tropenia in treated patients (Luesch et al., 2002; Gao et al., 2021). To 
overcome the onset of these side effects, chemical researchers started to 
couple monoclonal antibodies with auristatins (dolastatin derivatives) 
using ADC technology, a now well-known strategy for targeted cancer 
therapy (Doronina et al., 2003; Maderna and Leverett, 2015; Singh, 
2022). Brentuximab vedotin (Adcetris®) is an ADC composed by mon-
omethyl auristatin E, a synthetic analogue of dolastatin 10, conjugated 
with monoclonal antibody CD30, and in 2011 it was approved by the 
FDA for the treatment of anaplastic large T-cell systemic malignant 
lymphoma and Hodgkin lymphoma (Senter and Sievers, 2012). 

Lyngbyabellins (Fig. 4) were also first isolated from the sea hare 

Dolabella auricularia as dolabellins (Sone et al., 1995) and then attrib-
uted to the marine cyanobacterium Lyngbya majuscula (Luesch et al., 
2000a; Luesch et al., 2000b) and later also from Moorea and Okeania 
genera (Fathoni et al., 2020). As mentioned before, due to their ability to 
disrupt microfilament networks, they were reported to induce apoptosis 
in several cancer cell lines, with IC50 values at low micromolar ranges 
(Williams et al., 2003; Han et al., 2005; Choi et al., 2012). 

Among cyclopeptide cyanotoxins, lagunamides are still under 
investigation for a full understanding of their mechanism of action. In 
2010, lagunamide A (Fig. 12) and B were isolated from Lyngbya majus-
cula, showing potent cytotoxic activity against the P388 murine leuke-
mia cell line, with IC50 values of 6.4 and 20.5 nM, respectively (Tripathi 
et al., 2010). Later, both were proved to show more specific cytotoxicity 
against a panel of cancer cell lines, with the HCT8 human ileocecal 
adenocarcinoma cell line as the most sensitive (IC50 values of 1.6 and 
5.2 nM). Moreover, preliminary biochemical studies suggested that 
lagunamides might exert their cytotoxicity via induction of mitochon-
drial mediated apoptosis (Tripathi et al., 2012). More recently, Luo and 
colleagues isolated lagunamide D from a collection of marine cyano-
bacteria, mainly composed by Dichothrix, Lyngbya and Rivularia species, 
which showed anti-proliferative effect against A549 human lung 
adenocarcinoma cells (IC50 values of 7.1 ± 1.7 nM) (Luo et al., 2019). 
Lagunamide D, as well as other members of the family, was demon-
strated to trigger the apoptosis pathway, by the activation of caspase 3/ 
7, but further investigations on their mechanism of action are still 
necessary to fully explore the therapeutic potential of lagunamides as 
anticancer agents. 

Among all other cyanotoxins, some of them possess unexplored and 
unexploited anticancer properties. For example, microcystin analogues 
are assumed to be selective anticancer drugs for certain types of cancer 
cells, specifically for those that express organic anion transporting 
polypeptides (OATPs), without causing significant toxicity to normal 
cells because of the differences of redox status between normal and 
cancer cells (Monks et al., 2007; Niedermeyer et al., 2014). 

Fig. 11. Bibliometric analysis on “cyanotoxins” in terms of research areas using Web of Science database. The analysis included all research papers published from 
January 2013 to February 2022. The chart shows the 20 most frequent research fields. 
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Aplysiatoxins (Fig. 5) have been shown to act as PKC activators, with a 
subsequent tumor-promoting effect that is phorbol esters-like (Naka-
mura et al., 1989). Although in normal cells the PKC over-activation 
leads to malignant cell transformation, some human cancers are asso-
ciated with loss-of-function mutations of specific PKC genes. It was 
indeed reported that the correction by CRISPR-mediated genome editing 
of these mutations induced a reduction in tumor growth (Antal et al., 
2015; Isakov, 2018). These enlightening studies therefore demonstrated 
that PKC plays the role of tumor suppressor, thus suggesting that future 
clinical efforts should focus on stimulating, rather than inhibiting, PKC 
activity. With this awareness, the role of aplysytoxins in carcinogenesis 
should be re-analyzed. 

3.2. Antimicrobial 

The first evidence of cyanobacterial antimicrobial activity dates back 
to 1917, when the German botanist Richard Harder reported the capa-
bility of Nostoc punctiforme to excrete toxic agents, endowed with auto- 
inhibiting properties and antibacterial activity (Harder, 1917). 
Thenceforth, many published papers reported organic extracts and 
culture supernatants of cyanobacteria exhibiting significant antibacte-
rial, antifungal and antiviral effects (Flint and Moreland, 1946; Bur-
kholder et al., 1960; Starr et al., 1962; Welch, 1962; Patterson et al., 
1994; Falch et al., 1995; Dussault et al., 2016; Swain et al., 2017). 
Nevertheless, only a few antimicrobial compounds from cyanobacteria 
have been isolated and structurally characterized. Among these, indole 
alkaloid cyanotoxins from Stigonematales were proved to possess a wide 
range of biological activities and are now considered potential 

candidates for novel drug discovery. In particular, hapalindole A 
(Fig. 13) was first isolated in 1984 from Hapalosiphon fontinalis, a 
chlorine- and isonitrile-containing indole alkaloid which showed inter-
esting antibacterial activity against different Staphylococcus, Strepto-
coccus, Salmonella and Klebsiella strains, and antimycotic effects against 
Candida albicans and Trichophyton mentagrophytes (Moore et al., 1984; 
Moore et al., 1987). Hapalindoles, as mentioned before, represent the 
biosynthetic precursor of other indole alkaloid subclasses, and namely 
ambiguines, fischerindoles and welwitindolinones (Walton and Berry, 
2016; Nandagopal et al., 2021). Each has multiple bioactivities with 
applications in the industrial and pharmaceutical fields, recently re-
ported in an extensive review on hapalindole-like cyanobacterial alka-
loids (Hohlman and Sherman, 2021). 

As an example, ambiguine isonitriles (Fig. 13) isolated from 
Fischerella sp. were reported to have antibacterial activity against 
Mycobacterium tuberculosis, Bacillus anthracis, Staphylococcus aureus (MIC 
1.0–61.2 μM), and antifungal activity against Candida albicans, with MIC 
values at low micromolar ranges (Smitka et al., 1992; Raveh and Car-
meli, 2007). Fischerindole L (Fig. 13), initially isolated from an anti-
fungal extract obtained from Fischerella muscicola, was confirmed to 
inhibit C. albicans growth with a MIC value of 1.2 μM and, in addition, it 
demonstrated a clear antibacterial effect against Mycobacterium tuber-
culosis, Mycobacterium smegmatis and Staphylococcus aureus (Park et al., 
1992; Kim et al., 2012). N-Methylwelwitindolinone C isothiocyanate 
(Fig. 13) was responsible for the antifungal effect exerted by Hapalosi-
phon welwitschii lipophilic extract against Asperigillus oryrae, Penicillium 
notatum, Saccharomyces cereuisiae, and Trichophyton mentagrophytes 
(Stratmann et al., 1994). 

Table 1 
List of prominent cyanotoxins with biotechnological applications.  

CLASS TOXIN MECHANISM BIOACTIVITY REFERENCES 

alkaloids 
anatoxins nicotinic acetylcholine receptor agonists larvicide Berry et al. (2008) 

cylindrospermopsins inhibition of protein synthesis larvicide Berry et al. (2008) 
saxitoxins sodium channel blockers local anaesthetic Epstein-Barash et al. (2009) 

indole alkaloids 

ambiguines inhibition of NF-κB pathway antimicrobial, anticancer 
Raveh and Carmeli (2007) 
Walton and Berry. (2016) 

fischerindoles inhibition of bacterial RNA polymerase antimicrobial, anticancer Kim et al. (2012) 

hapalindoles inhibition of bacterial RNA polymerase anticancer, antimicrobial, algaecide, 
insecticide 

Moore et al. (1984) 
Walton and Berry (2016) 

lyngbyatoxins activation of protein kinase C grazing deterrent Berry et al. (2008) 
welwitindolinones inhibition of tubulin polymerization anticancer, antimicrobial, insecticide Walton and Berry (2016) 

lipoglycans lipopolysaccharides TLR4 antagonists immunomodulatory Jemmett et al. (2008) 

lipopeptides 

anabaenolysins disruption of biological membranes antimicrobial Shishido et al. (2015) 
antillatoxins sodium channel activators neuroplasticity promoter Mehrotra et al. (2022) 

curacins microtubule assembly inhibition anticancer 
Gerwick et al. (1994) 

Yoo and Gerwick (1995) Márquez 
et al. (1998) 

non-ribosomal 
peptides 

anabaenopeptins inhibition of proteases antithrombotic Schreuder et al. (2016) 
aeruginosins inhibition of proteases antithrombotic Del Valle et al. (2014) 

apratoxins inhibition of cotranslational translocation anticancer 

Luesch et al. (2001a) 
Gutiérrez et al. (2008) Matthew 

et al. (2008) 
Cai et al. (2017) 

cryptophycins microtubule assembly inhibitor anticancer Chen et al. (1998) 
Lieberman et al. (2001) 

dolastatins microtubule assembly inhibitor anticancer 
Bai et al. (1992) 

Poncet (1999)Luesch et al. (2001b)  

lagunamides mitochondria-mediated apoptosis anticancer 
Tripathi et al. (2010) 

Luo et al. (2019) 

lyngbyabellins depolymerisation of actin microfilaments anticancer, antimicrobial, antifouling 
Williams et al. (2003) 

Han et al. (2005) 
Choi et al. (2012) 

microcystins inhibition of protein phosphatases algaecide, larvicide, herbicide Berry et al. (2008) 
nodularins inhibition of protein phosphatases larvicide Berry et al. (2008) 

organophosphates guanitoxin irreversible inhibition of acetylcholinesterase insecticide Fiore et al. (2020) 

polyketides 
aplysiatoxins 

activation of protein kinase C, potassium 
channel blockers anticancer 

Antal et al. (2015) 
Isakov (2018) 

scytophycins depolymerisation of actin microfilaments antimicrobial Ishibashi et al. (1986) 
Wang et al. (2017)  
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Whereas hapalindole-like alkaloids exert their antimicrobial activity 
by inhibiting RNA polymerase (Doan et al., 2001), other antimicrobial 
cyanotoxins act by destructuring microbial cells, thus inducing their 
lysis. This is the case of anabaenolysins (Fig. 9), cytolytic lipopeptides 
that were supposed to provoke membrane permeabilization in an 
ergosterol-dependent manner. Their antifungal activity, alone and in 
combination with cyclodextrins, was demonstrated by disk diffusion 
assay on Candida albicans and Aspergillus spp. (Shishido et al., 2015). 

Cytotoxic effects of lyngbyabellins (Fig. 4) and scytophycins 
(Fig. 13), instead, is related to their ability to disrupt the actin micro-
filament network and, consequently, to block cell division (Han et al., 
2005; Smith et al., 1993). This should presumably be the antifungal 
mechanism of action of both these cyanobacteria-derived macrolides, 
but no evidence has been reported so far (Ishibashi et al., 1986; Moore 
et al., 1986; Milligan et al., 2000; Wang et al., 2017). 

In some other cases, the mechanism of cytotoxicity has no relation to 
the beneficial mode of action of cyanotoxins. As an example, antillatoxin 
(Fig. 9), which is a neurotoxic voltage-gated sodium channel activator, 
showed antibacterial effects against Bacillus cereus, Staphylococcus 
aureus and Listeria monocytogenes (MIC = 130–250 μg/ml) (Dussault 
et al., 2016). However, despite the frantic search for antimicrobials from 
natural sources that started in the 1940s, many screening studies did not 
have a follow-up, and indeed no antimicrobials isolated from cyano-
bacteria have entered clinical trials. 

3.3. Biocides 

Cyanobacteria produce numerous metabolites with inhibitory and 
cytotoxic activities against other microorganisms, mammals, fish, crus-
taceans. Very often, the release of these allelochemicals allows cyano-
bacteria to avoid planktivorous grazers, or to inhibit the growth of 
sympatric algal species, potential competitors for nutrients (Berry et al., 
2008). Therefore, over the years the possible use of cyanotoxins in the 
development of biocides has been evaluated. Algaecides, herbicides and 
insecticides are the products in which cyanotoxins could be widely used, 
but often their mode of action and potential ecological impact precludes 
many of them for use as biologically active agents. A clear example is the 
case of guanitoxin (Fig. 8), a natural occurring organophosphate similar 
in structure to synthetic nerve agent pesticides and insecticides (Fiore 
et al., 2020). Since their potent anticholinesterase activity has been 
correlated to an acute neurological toxicity, in 1993 the Chemical 
Weapons Convention prohibited the development, production, stock-
piling and use of synthetic organophosphate nerve agents (like Sarin, 
Tabun and Soman), because considered as weapon of mass destruction 
(CWC, 2020). Therefore, due to its high structural similarity with this 
class of compounds, the GNT potential application as pesticide was 
never investigated. 

On the contrary, anatoxin-a (Fig. 1) uses have been widely explored 
as mosquito larvicides. Despite its high cytotoxicity and poisoning 

Fig. 12. Chemical structures of anticancer cyanotoxins: 18) debromoaplysiatoxin, 19) curacin A, 20) cryptophycin 1, 21) apratoxin, 22) dolastatin 10, 23) lagu-
namide A. 
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effects on human and animals (Colas et al., 2021), which would make it 
an unsuitable candidate for control agent development, it has a short 
half-life, from 1 to 2 h to 14 days (WHO, 2020a; Sivonen and Jones, 
1999), compared to the synthetic insecticide DDT (dichloro-diphenyl- 
trichloroethane). DDT was first used to control mosquito populations 
during the Second World War and then entered the market in 1945, soon 
becoming an effective and cheap insecticide extensively used 
throughout the world. However, its chemical stability (half-life of about 
eight years) and lipophilicity resulted in a high bioaccumulation of DDT 
through the food chain and a long persistence in the environment. In 
addition, a possible relationship between DDT exposure and increase in 
cancer risk in humans has been hypothesized, even if not fully confirmed 
(Beard and Australian Rural Health Research Collaboration, 2006). As a 
result, DDT was classified as a probable human carcinogen by interna-
tional authorities and its use was increasingly restricted or banned in 
most developed countries after 1970. Anyway, the possibility of using 
anatoxin-a as an insecticide was confirmed when the pure molecule was 
tested on Aedes aegypti mosquito larvae, showing a mortality rate of 50% 
at concentrations of 50 μg/ml (Kiviranta et al., 1993; Berry, 2014). 
Unfortunately, considering the potential non-target toxicity, these 
findings were not sufficient to promote anatoxin-a use in commercial 
products. 

To date, the most promising biocidal strategy is based on the use of 
cyanotoxins inhibiting the photosynthesis as algaecidal agents. Hapa-
lindole A (Fig. 7) and other indole alkaloids isolated from Nostocales 
and Stigonematales showed potent antialgal activities, specifically 
inhibiting photosystem II in algae and other photosynthetic organisms 
(Moore et al., 1984; Doan et al., 2000; Walton and Berry, 2016). The 
added value of this type of approach is the exploitation of the innate 
ability of cyanobacteria to produce target-specific allelochemicals, 
devoid of non-specific toxicity, especially directed against humans and 
animals. On the other hand, a drawback of using biocidal agents spe-
cifically directed against photoautotrophs is the risk of affecting also 
non-pest plants. In any case Anyway, although there are numerous 
candidates with potential biocidal activity, no cyanotoxin has been yet 
identified which possesses the specific activity required for the devel-
opment of algaecides, herbicides or insecticides. 

3.4. Other applications for clinical purposes 

Since there are countless different applications that cyanotoxins can 
have in medicine, below we report only some other compounds that are 
considered very promising potential drugs, due to their specific features. 
Much of the non-ribosomal peptide cyanotoxins are protease inhibitors. 
In particular, these toxins are able to inhibit the hydrolytic activity of 
several serine proteases, including elastase, trypsin, thrombin and 
chymotrypsin, whose deregulation are often involved in various disease 
conditions like inflammation, atherosclerosis, coagulation abnormal-
ities, pulmonary, neuronal or immunological disorders (Rachel and 
Sirisha, 2017). In the medical field, anabaenopeptins (APs) (Fig. 4) were 
reported to be excellent candidates for the development of new drugs for 
the prevention and treatment of thrombotic diseases. More specifically, 
APs inhibit the Thrombin Activatable Fibrinolysis Inhibitor (TAFI), a 
proteolytic enzyme playing a crucial role in haemostasis that represents 
a possible risk factor for thrombotic and cardiovascular disorders (Hal-
land et al., 2015). Its activated form (TAFIa) acts by cleaving C-terminal 
lysine residues from fibrin, which are binding sites for plasminogen and 
tissue plasminogen activator (tPA); their removal induces a reduction of 
plasmin formation and thus attenuation of fibrinolysis. Consequently, 
TAFIa inhibition by APs provokes an increase in plasmin generation and 
fibrin clot degradation, thus resulting in an antithrombotic effect 
(Schreuder et al., 2016). Another promising cyanotoxin family of pep-
tides endowed with antithrombotic activity are the aeruginosins, which 
directly inhibit thrombin and other serine proteases such as trypsin and 
chymotrypsin (Del Valle et al., 2014). Although several aeruginosins 
exhibiting potent and selective inhibition of thrombin have been iden-
tified (Ishida et al., 1999), none of them are currently under evaluation 
for the treatment of coagulation disorders and thromboembolic disease. 
However, the discovery of aeruginosins family has paved the way for the 
study of close natural analogues and the design of peptidomimetics with 
thrombin inhibiting activity as novel antithrombotic drugs. 

As mentioned above, antillatoxins (Fig. 9) work as activators of 
VGSCs, thus triggering an influx of Na+ in neurons. Intracellular Na+

acts, in turn, as a signalling molecule, stimulating ionotropic glutamate 
receptors (NMDAR), increasing both channel open probability and mean 
open time. The subsequent increase of intracellular Ca2+ provokes the 
downstream engagement of the Ca2+-dependent CaMKK pathway, 

Fig. 13. Chemical structures of antimicrobial cyanotoxins: 24) hapalindole A, 25) ambiguine I isonitrile, 26) fischerindole L, 27) N-methylwelwitindolinone C 
isothiocyanate, 28) scytophycin. 
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responsible for the induction of neurite outgrowth (Jabba et al., 2010). 
More recently, Mehrotra and colleagues demonstrated that Ca2+ influx 
also increases brain-derived neurotrophic factor (BDNF) release and the 
subsequent activation of tropomyosin receptor kinase B (TrkB) signal-
ling, implicated in neuronal and synaptic maturation. These results 
suggest that VGSC activators like antillatoxin may represent a new 
pharmacological strategy to promote neuronal plasticity through a 
NMDAR-BDNF-TrkB-dependent mechanism (Mehrotra et al., 2022). 
Conversely, saxitoxin (Fig. 1) was demonstrated to induce a potent and 
prolonged local anaesthesia by VGSCs inhibition and subsequent 
blocking of axonal conduction propagation. However, due to its innate 
systemic toxicity, saxitoxin has been listed under the international 
Chemical Weapons Convention (CAS Number: 35523–89-8) (CWC, 
2020), therefore it has never been introduced into clinical practice 
(Adams et al., 1976; Kohane et al., 2000). Later, the development of 
saxitoxin-loaded liposomes prolonged the duration of the anaesthetic 
effect and minimized myotoxicity, neurotoxicity, inflammation, and 
systemic toxicity (Epstein-Barash et al., 2009). 

Last but not least, it is worth mentioning the potential role of cya-
nobacterial LPSs as anti-inflammatory and immunomodulatory agents. 
More specifically, an LPS derived from the cyanobacterium Planktothrix 
sp. FP1 (named Cyp) was reported to act as a selective TLR4–MD-2 re-
ceptor antagonist. By TLR4 binding, but not activation, Cyp showed an 
antagonistic effect against Neisseria meningitidis lipopolysaccharide, and 
inhibited cytokine production in an in vitro model of septicaemia 
(Macagno et al., 2006; Jemmett et al., 2008). A partial structure for 
Oscillatoria planktothrix FP1 LPS was also proposed (Carillo et al., 2014), 
but further studies are necessary to further elucidate the correlation 
between cyanobacterial LPS structures and their potential clinical 
applications. 

4. Conclusions 

Evidence that cyanobacteria represent a valuable reservoir of 
bioactive natural compounds is clear and widely accepted. Among these 
precious biomolecules, cyanotoxins are largely produced by cyanobac-
teria to assist in the normal functioning of basic metabolism or, more 
frequently, to control secondary functions involved in cell-cell 
communication, competition for nutrients or adaptation to environ-
mental conditions. Over the years, hundreds of cyanotoxins have been 
isolated and characterized, and their biological activities studied from 
an ecological and toxicological point of view. Only in recent decades, 
thanks to their potential exploitation in the biotechnological field, 
cyanotoxins have gained more attention, finding applications as bio-
cides, anticancer agents, and antimicrobials. Despite their potent bio-
logical activities, a few cyanotoxins have entered clinical trials and far 
fewer have been approved by the U.S. Food and Drug Administration. 
This demonstrates how little is still known about the potential of cya-
notoxins in the medical and industrial fields. As discussed above, the 
beneficial role of cyanobacteria deserves more scientific attention and 
interdisciplinary research. Hopefully, this study can lay the groundwork 
for a re-evaluation of cyanotoxins, for too long considered only for their 
toxicity, for innovative biotechnological applications. 
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