
State of the Practice in Software Testing Teaching
in Four European Countries

Porfirio Tramontana
University of Naples Federico II

Naples, Italy

ptramont@unina.it

Beatriz Marı́n
Universitat Politècnica de València

València, Spain

bmarin@dsic.upv.es

Ana C. R. Paiva
University of Porto & INESC TEC

Porto, Portugal

apaiva@fe.up.pt

Alexandra Mendes
University of Porto & HASLab / INESC TEC

Porto, Portugal

alexandra@archimendes.com

Tanja E. J. Vos
Universitat Politècnica de València

Open Universiteit, The Netherlands
tvos@dsic.upv.es

Domenico Amalfitano
University of Naples Federico II

Naples, Italy

domenico.amalfitano@unina.it

Felix Cammaerts
KU Leuven

Leuven, Belgium

felix.cammaerts@kuleuven.be

Monique Snoeck
KU Leuven

Leuven, Belgium

monique.snoeck@kuleuven.be

Anna Rita Fasolino
University of Naples Federico II

Naples, Italy

fasolino@unina.it

Abstract—Software testing is an indispensable component of
software development, yet it often receives insufficient attention.
The lack of a robust testing culture within computer science
and informatics curricula contributes to a shortage of testing
expertise in the software industry. Addressing this problem
at its root —education— is paramount. In this paper, we
conduct a comprehensive mapping review of software testing
courses, elucidating their core attributes and shedding light on
prevalent subjects and instructional methodologies. We mapped
117 courses offered by Computer Science (and related) degrees in
49 academic institutions from four Western European countries,
namely Belgium, Italy, Portugal and Spain. The testing subjects
were mapped against the conceptual framework provided by the
ISO/IEC/IEEE 29119 standard on software testing. Among the
results, the study showed that dedicated software testing courses
are offered by only 39% of the analysed universities, whereas
the basics of software testing are taught in at least one course
at every university. The analysis of the software testing topics
highlights the gaps that need to be filled in order to better align
the current academic offerings with the real industry needs.

Index Terms—Software testing, Testing education, Testing
Teaching, Mapping of courses

I. INTRODUCTION

As the importance of software in our society continues to

grow, the impact of software failures becomes more significant

[1], [2]. In the US alone, the cost of poor software quality

has been estimated at $2.08 trillion for 2020 [3]. Although

software testing is a critical component in ensuring the quality

of software and reducing the risks associated with software

failures, it is still often overlooked. There have been efforts

to mitigate the software failures reported by Krasner [3],

such as the Common Vulnerabilities and Exposures (CVE)

[4] which aims to catalogue publicly known vulnerabilities

and exposures in software. Despite this, a report by Failwatch

has still identified 606 software failures affecting 3.6 billion

people [1].

The industry faces several testing challenges related to

test case design, scripting, execution, reporting, management,

automation and even the lack of general knowledge [5], [6],

[7]. There is also a lack of testing culture in organisations.

Programmers may understand the importance of testing, but

they often put it off because of the pressure to deliver quickly

[7]. In addition, the quality of test cases has been found to be

influenced by the domain knowledge and testing expertise of

the person performing the testing process [6].

We advocate that the problem should be tackled at its

root: education. However, software testing is often neglected

in computer science courses. For example, curricula spend

more time on more ‘glamorous’ topics [8], such as artificial

intelligence.

At university level, several efforts have been made to im-

prove teaching techniques for testing in order to better prepare

students for industry, as reported by [9] and [10]. Nevertheless,

there are still many problems with teaching testing, such as

the disconnection between theory and practice, which leads

to less interest on the part of students; classroom examples

are far removed from real-world projects, or they are focused

on a particular testing technique; students’ lack of testing

experience may lead to them not being able to perform the

testing process with all the steps in industry; students are not

confident in their testing skills, etc.

Therefore, when seeking a solution to this problem in

education it is important to consider three perspectives: the

needs of students, academia, and industry [11], [12]. Regard-

ing industry, a categorisation of industry needs for testing

should be identified. For academia, an instructional design for

59

2024 IEEE Conference on Software Testing, Verification and Validation (ICST)

979-8-3503-0818-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ICST60714.2024.00015

early/seamless teaching testing materials should be developed.

Regarding students, the cognitive models of students during

the practice of software testing should be taken into account.

Taking these three perspectives together, teaching capsules

can be proposed that aim at early, seamless integration into

education with appropriate instructional design.

This paper takes a deeper look at the academic perspective

by investigating the state of the practice in software testing

education in academic institutions. This will allow for a more

seamless integration of educational software testing tools into

current curricula. There are some works that have already

investigated the state of software testing education in higher

education [13], [14], [15], [16]. However, these works focus

on individual countries or on the world as a whole, i.e. none

of the existing studies focus on the European context. As a

result, a more general overview of the state of software testing

education in Europe is lacking in the literature.

To fill this gap, we decided to carry out a study investigating

the state of the practice in software testing education in

academic institutions in the context of four Western European

countries. We conducted this study as part of the ENACTEST

Project [17] which aims to improve the current practices in

software testing education. Indeed, one of the goals of the

ENACTEST Project researchers is to propose new software

testing teaching materials, the so-called capsules, that will be

aligned with the industry and students’ learning needs [12].

In this paper we present the results of the study where we

focused on the higher education courses offered by academic

institutions belonging to Belgium, Italy, Portugal, and Spain.

We chose these countries for convenience, since they coincide

with the countries of four of the partners of the ENACTEST

Project. The aim of the study is to understand the diffusion of

software testing-related courses in the considered context, the

aspects of software testing that are most commonly taught, and

course-specific teaching characteristics including Educational

Level, Number of credits, Duration, Student Assessments,

Testing topics taught, and Reference books. Thus, the con-

tributions of this paper are: (1) the current state of testing

education practice in the considered European countries, (2)

the topics that are commonly taught, and (3) the identification

of improvements needed for testing education in computer

science or informatics curricula.

The contribution of this work is useful for academics,

researchers, and practitioners. Academic institutions can use

our results to improve their relevant curricula by adding

testing topics that are commonly taught in these European

countries. Practitioners can use the information provided here

to prioritise training on specific topics that are not usually

taught in testing courses. Researchers can use our results to

develop new approaches that can reduce teachers’ workload in

teaching testing and improve students’ learning effectiveness.

The paper is organised as follows. Section II presents related

works that investigate the state and diffusion of testing courses

in computer science curricula. Section III illustrates the aim

of our study, with the corresponding research questions, target

population, and data collection procedures. Section IV presents

the results of our study and discusses threats to validity.

Section V provides a discussion of the most commonly taught

testing topics, the reference books used in testing courses,

and future research directions. Finally, Section VI presents

our main conclusions and future works.

II. RELATED WORK

A systematic mapping study conducted in 2019 [9], has

analysed 293 papers on the integration of software testing

in introductory programming courses. The study reports that

research on these topics can be divided into several categories,

namely, teaching methods, course materials, programming

assignments, programming process, program/test quality, con-

cept understanding and tools. The study also provided several

benefits and drawbacks on the integration of software testing

into programming courses. Benefits include: timely feedback,

objective assessment and improvement in students’ program-

ming performance. Drawbacks include additional workload

for course staff, student’s reluctance to conduct testing and

programming courses already being packed. Nevertheless, this

work does not provide evidence of the number of courses

that include testing topics in programming courses, neither

the institutions that are offering the courses.

A survey published in 2010 [13], conducted among ran-

domly chosen universities in Canada and the US revealed

that many computer science degree programs did not include

dedicated courses for teaching software testing (ST) in their

curricula. The findings indicated that two out of the top five

Canadian universities and seven out of ten universities in the

US did not offer standalone software testing courses.

A systematic mapping of the literature on testing education

was published in 2020 [10], which was focused on exploring

approaches to improve testing education. This literature review

analyzes 204 papers from 1992 to 2019. The results show

that there are several approaches to improve software testing

education, which have been evaluated either in specific testing

courses or integrated in non-specific testing courses. Never-

theless, the authors recognize that the type of testing activities

performed in the courses are a very small sub-set of courses

taught at universities since educators usually do not publish

the organization properties of testing courses. Moreover, a

clear characterization of the software testing courses and the

corresponding universities is missing in this work.

The state of undergraduate software testing education in

Brazil in 2012 was published in [14]. This study involved

a comparison of the course recommendations provided by

the Brazilian Computer Society (SBC) with the curricula of

25 Brazilian universities. Additionally, the study extended its

analysis to include 21 international universities from vari-

ous countries, including the United States (13), the United

Kingdom (3), Switzerland (2), China (1), the Netherlands

(1), and Singapore (1), in which the course recommendations

of the Association for Computing Machinery (ACM) were

considered. In both the Brazilian and international university

contexts, the analysis revealed a common issue: there was

an insufficient allocation of lectures dedicated to teaching

60

software testing, indicating that software testing practices were

not adequately covered.

A replicated study was performed in 2020 [18]. This re-

search involved a survey of courses that incorporated topics

related to Software Testing in 28 Brazilian universities. Their

findings revealed that specific courses dedicated to Software

Testing were offered in 68% of the universities. However, it

was noted that, with the exception of only two universities,

such courses were optional rather than mandatory.

In a more recent study [19], a global perspective on how

instructors addressed the topic of Software Testing was per-

formed. Although global, it is worth noting that Africa was not

included. The study focused on various aspects, such as course

content, teaching methods, the use of educational resources,

and examination methods for students. One of the noteworthy

findings from this study was the presence of commonalities in

the subjects covered. Specifically, functional testing emerged

as the most frequently taught topic. Additionally, their study

revealed that the traditional approach of classroom-based

teaching was the prevailing method used in this context.

A systematic survey of syllabi for courses related to soft-

ware testing offered in Sweden in 2022 was presented in

[16]. This study examined course offerings from 25 Swedish

universities that provided degrees in Computer Science or

related fields. Their findings indicated that among these uni-

versities, 14 currently provide specific courses in software

testing. Furthermore, they observed that approximately 32%

of these individual courses were available at the undergraduate

level. Moreover, about 28% of the universities offered courses

aimed at specialized training in testing. In the majority of the

universities surveyed, dedicated software testing courses made

up roughly 5% of the total degree credits offered.

A recent study [15] investigated the curricula of 100 highly

ranked universities in Asia, America and Europe. Results in

this study indicates that just half of computer science curricula

has software testing courses. However, a deep analysis of the

specific topics of testing taught in these courses is lacking.

Despite the importance of having practical knowledge of

courses about software testing with their main characteristics,

the related work reveals that there isn’t a clear characterization

of software testing courses in the context of Europe. We

address this gap in this work by performing a mapping review

of highly ranked academic institutions of a set of representative

countries in Europe.

III. STUDY DESIGN

In this study we were interested in knowing the state of

the practice of teaching software testing in academic institu-

tions from four European countries, namely, Belgium, Italy,

Portugal and Spain. Although other types of institutions, like

higher-education schools and professional bachelors, also offer

curricula with software testing, we did not consider them since

they were out from the scope of this study.

We used the Goal-Question-Metric template [20] to define

the goal of the study as follows: Analyse software testing

courses at the academic level and their characteristics for

the purpose of understanding the state of the practice with
respect to software testing education from the point of view of
researchers and professors in the context of ranked universities

in European countries.

A. Research Questions

In order to achieve the goal of our study, we have formulated

the following research questions:

RQ1 How common are software testing related courses in the

considered academic context?

RQ2 What are the educational organisational properties of

these courses?

RQ3 What aspects of software testing are most commonly

taught?

The first question aims to provide an overview of the courses

that focus entirely on Software Testing (ST), and courses that

include other topics but also Software Testing topics (NST) in

computer science related degrees.

The second question is designed to characterise the courses

on the basis of their educational organisational properties.

This question aims to provide an overview of whether these

courses are offered at either Bachelor or Master level in the

academic institutions considered. In addition, this question

aims to provide information on teaching methods (theoretical

or practical) and the course characteristics, i.e. the course

name, year, the number of credits, duration in terms of hours,

assessment methods, and reference books.

The last question aims to investigate the topics that are more

often taught in the mapped courses and also the ones that

are missing in those courses. To properly identify the testing

topics, we use the internationally agreed ISO/IEC/IEEE 29119

series of standards for software testing. We chose this series

of standards because they are intended to be used by any

organization when performing any form of software testing

and using any software development life cycle. In particular,

we referred to the 2022 revision of the ISO/IEC/IEEE 29119

International Standard on Software and Systems Engineering

— Software Testing, part 1 [21], which provides a general

introduction to software testing, the role of software testing in

V&V processes, how testing can be implemented, the concepts

of test plan and test strategies, including test levels, test types

and test design techniques.

B. Target Population

We decided to systematically search for academic courses

teaching software testing topics in each of the European

countries considered. Unlike the case of Sweden analysed by

Barrett et al. [16], we could not find integrated national repos-

itories of offered courses for any of the analysed countries, so

we adopted the search approach described below.

In order to have a first list of the universities that offer com-

puter science subjects in their degrees, we took into account

the Scimago Institutions Ranking1, which ranks academic

1Scimago Institutions Ranking, https://www.scimagoir.com/rankings.
phphttps://www.scimagoir.com/rankings.php

61

TABLE I
NUMBER OF UNIVERSITIES AND COURSES INCLUDED IN THE ANALYSIS

Spain Italy Belgium Portugal Overall

Universities in
SJR ranking

62 70 10 29 171

Randomly Selected
Universities

19
(31%)

20
(29%)

3
(30%)

7
(24%)

49
(29%)

Analysed
Courses

28 44 10 35 117

institutions based on their research performance, innovation

output, and societal impact as measured by their web visibility,

allowing queries for specific countries, years and scientific

fields. We focused on the 2023 rankings2 of Computer Science

Universities. The rankings included 62 institutions from Spain,

70 from Italy, 10 from Belgium and 29 from Portugal, for

overall 171 universities.

We decided to construct our population by selecting a

random sample equal to approximately 30% of all the 171

listed universities. We therefore selected at random 49 out of

171 universities (equal to 29%).

For each university, we examined the bachelor’s and mas-

ter’s degrees offered through their institutional websites to

identify courses related to software testing. As a priority, we

analysed bachelor’s and master’s degrees related to computer

science (i.e. Computer Engineering, Computer Science, Soft-

ware Engineering, etc.). Therefore, we manually scanned the

courses offered, looking for names that could be related to test-

ing such as “Software Testing”, “Verification & Validation”,

“Software Quality”, etc. We also considered “Software Engi-

neering” and “Programming” courses, as they may typically

deal with the basics of testing.

In order to filter only relevant courses, we applied the

following inclusion criteria:

• The course syllabus contains a description of the course

topics.

• The course syllabus is written in English or in the

language of one of the ENACTEST Project partners,

namely: Spanish, Italian, Portuguese and Dutch.

• The course syllabus includes testing topics.

In addition, we applied the following exclusion criterion:

• Cancelled courses (not active in 2022 and 2023).

At the end of this selection process, we found 117 courses

that satisfied the inclusion and exclusion criteria and admitted

them to the successive steps.

The number of universities listed in the Scimago Ranking

and the number of universities we analysed for each country

are shown in Table I. The Table also reports the number of

analysed courses for each country, which were 28 from Spain,

44 from Italy, 10 from Belgium and 35 from Portugal.

C. Data Collection

To facilitate the collection of course information from each

country, researchers who understand the language of each

2https://www.scimagoir.com/rankings.php?sector=Higher+educ.\&area=
1700&ranking=Overall

country searched for the courses of the ranked universities

and completed a data extraction form. We made sure to have

several researchers per language. In this way, we ensured the

correct identification of the courses and the validity of the

information obtained.
The researchers studied the general characteristics of the

courses by analysing the publicly available information, the

syllabus and the curricula offered on the official websites of

their academic institutions. The data extraction form we used

to collect course information included the following fields:

• Country

• Name of the university

• Name of the degree

• Degree Level (e.g. Bachelor or Master)

• Course Name

• Course Year

• Teacher Name

• Number of course credits (EC)

• Number of hours (distinguished between Theory and Lab

hours, when the information is available)

• Student Assessment Methods

• Course Syllabus

• Focus on Software Testing (Complete or Partial)

• List of testing topics included in the course

• Reference books

The focus of a Software Testing course can be either

Complete or Partial, depending on the amount of software

testing topics offered in the course. We classified courses as

Software Testing courses (ST) if they had a majority focus

on testing topics (i.e. more than 75% of topics correspond

to testing), and as Non-Software Testing courses (NST) if

software testing topics were only a minority of the course

topics. This classification was finalised by reading the course

syllabi. This process was carried out by two researchers who

analysed all the courses and information and classified them

as ST or NST.
With regard to the testing topics offered, we mapped

them against the conceptual framework for testing offered

by the ISO/IEC/IEEE 29119 standard on Software Testing.

We focused on the dynamic testing approaches according

to the standard, distinguishing: Test Design Techniques, Test

Practices, Testing Levels, and Testing Types (see Table II).
Finally, two other researchers analysed the classifications

collected from the courses to report the results.
The collected information are available online at

https://doi.org/10.5281/zenodo.10467218

IV. RESULTS

A. RQ1: How common are software testing related courses in
the considered academic context?

Overall we found 117 courses that include software testing

topics in the 49 considered universities: we classified 22 of

them as Software Testing (ST) courses and the remaining

95 ones as courses including some software testing topics

(NST). Table III reports the number of mapped courses for

each country.

62

TABLE II
TESTING APPROACHES ACCORDING TO THE ISO/IEC/IEEE 29119

STANDARD ON SOFTWARE TESTING

Test Design Technique Testing Practice Testing Type
Specification Based Model-based testing Functional testing

Equivalence Partitioning Scripted testing Accessibility testing
Classification tree method Exploratory testing Compatibility testing
Boundary value analysis Experience-based testing Conversion testing
Syntax testing Manual testing Disaster recover testing
Combinatorial testing A/B testing Installability testing
Decision table testing Back-to-back testing Interoperability testing
Cause-effect graphing Mathematical-based testing Localization testing
State transition testing Fuzz testing Maintainability testing
Scenario testing Keyword-driven testing Performance related testing
Use case testing Automated testing Portability testing
Random testing Other Procedure testing
Metamorphic testing Reliability testing
Requirements-based testing Security testing
Structure Based Testing Level Usability testing

Statement testing Unit testing Other
Branch testing Integration testing
Decision testing System testing
Branch condition testing System integration testing
Branch cond. comb. testing Acceptance testing
MC/DC testing Other
Data flow testing

Experience Based
Error guessing

Other

TABLE III
NUMBER OF ST AND NST COURSES FOUND IN THE UNIVERSITIES

SELECTED OF THE CONSIDERED COUNTRIES

#Universities #ST Courses #NST Courses
Spain 19 7 21
Italy 20 5 39

Portugal 7 9 26
Belgium 3 1 9

Total 49 22 95

If we consider the ST courses and their diffusion in our

population, 19 out of the 49 universities offered at least one of

them. Only the Universities of Lisbon, Aveiro, and Coimbra,

in Portugal, offered more than one distinct ST course, but

in different educational programs. On average, we found ST

courses in 39% of all the mapped universities. Regarding the

95 NST courses, 46 out of 49 universities offered at least

one course (94%) that addresses in part software testing. If

we consider both types of courses, 14 out of 49 universities

(29%) offer both ST and NST courses.

Regarding the diffusion of ST courses in the different

countries, 7 of them were present in 19 Spanish universities,

5 courses in 21 Italian ones, 9 in 7 Portuguese universities,

and one course in one of the 3 mapped Belgian universities.

If we consider the percentage of ST courses with respect to

the number of analysed universities per country, we have ST

courses in 37% of Spanish universities, 24% of Italian ones,

33% of Belgian ones, and 71% of Portuguese universities. By

comparing these results with those reported in the literature,

we find that the frequency of ST courses in Spain, Belgium and

Italy is lower than in Sweden, where Barrett et al. [16] recently

found 14 ST courses in 25 different universities (56%). Only

the frequency of ST courses in Portugal was 71% and larger

than in Sweden.

TABLE IV
ST COURSE- OVERVIEW CHARACTERISTICS

Co. University Course Name Deg. Yr.
BE Antwerpen Software testing MSc 1
ES Barcelona (Autonoma) Test and software Quality BSc 3
ES Madrid (Complutense) Software Testing BSc 3
ES Madrid (Politécnica) Software validation and verification MSc 1
ES Oviedo Software Quality, Validation and Verification BSc 4
ES Alacant Planning and Testing of Software Systems BSc 3
ES Valencia (Politecnica) Software testing MSc 2
ES Zaragoza Validation and Verification BSc 3
IT Bergamo Testing e Verifica del Software MSc 2
IT Firenze Advanced Programming Techniques MSc 1
IT Milano Verifica e Convalida del Software MSc 1
IT Milano (Bicocca) Software Quality MSc 1
IT Napoli (Federico II) Software Testing MSc 1
PT Aveiro Robust Software MSc 1
PT Aveiro Software Testing and Quality Control BSc 3
PT Aveiro Software Testing MSc 1
PT Coimbra Analysis of Software Artifacts MSc 1
PT Coimbra Software Quality and Dependability MSc 1
PT Lisbon Software Verification and Validation MSc 1
PT Lisbon Software Testing and Validation MSc 1
PT Minho Testing and Validation of Information Systems MSc 1
PT Porto Software Testing, Verification and Validation MSc 2

B. RQ2 : What are the educational organisational properties
of the courses?

Tables IV and V provide an overview on the characteristics

of respectively the ST and NST courses we mapped. In this

section we analyse the main characteristics of the courses,

including their Educational Level, Curriculum, Year, Course

Names, Number of Credits and Assessment Methods.

1) Educational Level, Curriculum and Year of courses:
In terms of educational level, 6 ST courses are offered at

the bachelor level (always in the final year) and 16 at the

master level. In terms of curriculum, 15 courses are offered

by Computer Science curricula, whereas the remaining 7 ones

belong to Computer Engineering ones.

66 out of 95 NST courses are at the bachelor level, while

the remaining 29 courses are at the master level. As to

the educational programs, 47 belong to Computer Science

curricula, 46 are in Computer Engineering curricula, and the

two remaining ones are offered in other scientific fields.

It is interesting to note that NST courses are equally

offered in the context of Computer Science and Computer

Engineering curricula, while ST courses are more common

in Computer Science than in Computer Engineering ones. A

possible explanation of this datum is that CS curricula are

typically more focused on software development topics than

CE curricula that usually have to give space also to non-

software related topics from other engineering areas.

Figure 1 illustrates the current offering of ST and NST

courses from our population, by distinguishing them on the

basis of the corresponding Educational Level (Master or

Bachelor) and Year. As the Figure shows, NST courses are

most often offered in the third year of bachelor’s degrees

or in the first year of master’s degrees. ST courses, on the

other hand, are always offered starting from the third year of

bachelor’s degrees and are mostly present in the first year of

master’s degrees.

2) Course Names : We analysed the courses in order to find

the most frequent terms included in their names. For the ST

courses, the most common terms were: “Software Testing” (10

63

TABLE V
NST COURSE- OVERVIEW CHARACTERISTICS

Co. University Course Name Deg. Yr.
BE Antwerpen Project software engineering BSc 1
BE Antwerpen Software engineering BSc 3
BE Gent Software Development & Operations BSc 3
BE Leuven (KUL) Digital Design Concepts BSc 2
BE Leuven (KUL) Object-gericht programmeren BSc 1
BE Leuven (KUL) Objectgerichte softwareontwikkeling BSc 2
BE Leuven (KUL) Programmeertechnieken BSc 2
BE Leuven (KUL) Software engineering en webtechnologie BSc 3
BE Leuven (KUL) Software-ontwerp BSc 3
ES Alcalá Software Engineering BSc 1
ES Barcelona (Autonoma) Software Engineering BSc 2
ES Barcelona (Politecnica) Software Architecture BSc 3
ES Barcelona (Politecnica) Software Architecture BSc 3
ES Barcelona (Politecnica) Software Architecture BSc 3
ES Castilla La Mancha Software engineering II BSc 3
ES Castilla La Mancha Software engineering II BSc 3
ES Granada Software Development BSc 3
ES Madrid (Autónoma) Software Engineering BSc 3
ES Madrid (Carlos III) Software Development BSc 2
ES Madrid (Rey Juan Carlos) Software Quality BSc 3
ES Málaga Introduction to Software Engineering BSc 1
ES Murcia Software Quality BSc 4
ES Oviedo Quality of Product and Processes MSc 1
ES Pais Vasco Software Engineering II BSc 3
ES Sevilla Design and Testing I BSc 3
ES Sevilla Desing and Testing II BSc 3
ES Valencia Software production methods MSc 1
ES Valencia (Politecnica) Audit, Quality and Management of Information Systems MSc 1
ES Valencia (Politecnica) Audit, Quality and Management of Information Systems MSc 1
ES Zaragoza Software Engineering BSc 3
IT Benevento Software Engineering BSc 3
IT Bergamo Software Engineering BSc 3
IT Brescia Software Engineering BSc 3
IT Campobasso Software Engineering BSc 3
IT Firenze Programming Methodologies BSc 2
IT Genova Advanced Programming Techniques BSc 3
IT Genova Functional and Security Testing Techniques MSc 1
IT Genova Software Engineering MSc 1
IT Genova Software Engineering Fundamentals BSc 3
IT Milano (Bicocca) Software Analysis and Design BSc 2
IT Milano (Politecnico) Software Engineering BSc 3
IT Milano (Politecnico) Software Engineering BSc 3
IT Milano (Politecnico) Software Engineering BSc 3
IT Milano (Politecnico) Software Engineering BSc 3
IT Milano (Politecnico) Software Engineering 2 MSc 1
IT Milano (Politecnico) Software Engineering 2 MSc 1
IT Milano (Politecnico) Software Engineering 2 MSc 1
IT Modena Software Engineering BSc 3
IT Napoli (Federico II) Software Engineering BSc 3
IT Napoli (Federico II) Software Engineering BSc 3
IT Napoli (Federico II) Software Engineering BSc 3
IT Napoli (Federico II) Software Engineering BSc 3
IT Napoli (Federico II) Software Project Management and Evolution MSc 1
IT Napoli (Unicampania) Software Engineering BSc 3
IT Padova Software Engineering BSc 3
IT Pisa Software Engineering BSc 3
IT Roma (Sapienza) Software Design BSc 2
IT Salerno Ingegneria, Gestione ed Evoluzione del Software BSc 3
IT Salerno Management and Evolution of Software Projects MSc 1
IT Salerno Software Dependability MSc 2
IT Salerno Software Engineering BSc 3
IT Torino Istituzioni di Sviluppo Software MSc 1
IT Torino (Politecnico) Object Oriented Programming BSc 2
IT Torino (Politecnico) Object Oriented Programming BSc 2
IT Torino (Politecnico) Object Oriented Programming BSc 2
IT Torino (Politecnico) Software Engineering MSc 1
IT Torino (Politecnico) Software Engineering MSc 1
IT Trento Software Engineering BSc 2
IT Verona Software Engineering Fundamentals MSc 1
PT Aveiro Analysis and Exploration of Vulnerabilities MSc 1
PT Aveiro Digital Accessibility and Compliance MSc 1
PT Aveiro Software Engineering BSc 2
PT Aveiro Usability and User Experience MSc 1
PT Coimbra Design and Development of Secure Software MSc 1
PT Lisbon Software Engineering BSc 3
PT Lisbon Programming labs BSc 1
PT Lisbon (ISCTE) Agile Software Development BSc 2
PT Lisbon (ISCTE) Software Engineering BSc 3
PT Lisbon (Nova) Object Oriented Programming BSc 1
PT Lisbon (Nova) Software Construction and Verification MSc 1
PT Lisbon (Nova) Software Engineering BSc 3
PT Lisbon (Nova) Software Quality MSc 1
PT Minho Cybersecurity MSc 1
PT Minho Informatics Laboratories I BSc 1
PT Minho Information Systems Security Engineering MSc 1
PT Minho Object Oriented Programming BSc 2
PT Minho Security Engineering MSc 1
PT Minho Security Technologies MSc 1
PT Minho Software Systems Development BSc 3
PT Porto Programming BSc 1
PT Porto Software Design and Testing Laboratory BSc 2
PT Porto Software Engineering BSc 2
PT Porto Secure Software Engineering MSc 2
PT Porto Security in Software Engineering MSc 1
PT Porto Software Engineering Laboratory MSc 1

Fig. 1. Courses by Educational Level and Year

times), “Verification and Validation” (8 times), and “Software

Quality” (5 times). In a few cases, the name of the course may

include less typical terms, such as in courses named “Analysis

of Software Artifacts”, “Planning and Testing of Software

Systems”, “Robust Software”, and “Advanced Programming

Techniques”.

Regarding the NST course names, the most frequent terms

were “Software Engineering” (44 times), “Programming” (20

times), “Software Architecture Design” (10), “Security” (9),

“Software Quality” (7), “Software Project Management” (6),

and “Agile Software Development” (1). These results confirm

that software testing topics are usually introduced in Software

Engineering courses, but also in many Programming, Software

Architecture design, Security, and Quality courses.

3) Number of Course Credits (EC): We analyzed the num-

ber of European Credits (EC) associated with each course,

EC being a standard system for measuring the effort required

by a student for that course. We also tried to analyse the

number of hours of each course, distinguishing between the

theoretical, practical, and laboratory hours. Unfortunately, this

information could not be extracted from the websites of each

course analysed, as it was not always available or no standard

description according to these categories was provided.

In terms of the number of ECs, almost all of the 22 mapped

ST courses correspond to 6 ECs, with only three exceptions

of 5, 4 and 2 ECs respectively. The average EC value of ST

courses is 5.68 credits.

We made a similar analysis of the NST courses. They have

EC values ranging from 3 to 12 ECs, with an average of 6.75

credits. However, it was not possible to determine exactly how

much of the course time was spent on testing.

4) Assessment Methods: Regarding the assessment, we

collected the different approaches used by the courses and

abstracted 6 types of assessment methods. We classified the

methods into: Open questions, Closed questions, Exercises,

Homework, Project, and Discussion. Open and Closed ques-

tions assessments are based on a questionnaire. Exercises

assessments require students to complete practical exercises.

Homework assessments are based on the evaluation of home-

work assigned to students. Project means that the assessment is

64

based on a project usually carried out by students organized in

teams. Discussion represents a more traditional method based

on a talk or presentation on topics provided by the course.

Figure 2 summarizes the types of assessment methods and

the percentages of ST and NST courses adopting them. As the

Figure shows, ST and NST courses present similar percentages

for each method.

Fig. 2. Frequency of Assessment Methods in Mapped ST and NST Courses

Regarding ST course assessments, the majority of courses

(14 out of 22, 64%) rely on a Project, whereas a Discussion

is used in 11 out of 22 courses (50%). The use of Open

questions or Exercises (including either written exercises or

lab exercises) is quite frequent (respectively in 32% and 27%

of courses), whereas Homework or Closed questions are less

common (respectively in 9% and 5% of courses).

Analogously for NST courses, the most common assessment

method is the Project (in 59% of courses) followed by the

Discussion (49%), Open Questions (38%), written or lab

Exercises (27%), Homework (8%) and Closed Questions (only

in 2% of courses). For 3 NST courses (3%) we could not

find detailed information about their assessment methods and

reported them as N/A.

The data we collected from the publicly available course

descriptions also shows that most of the mapped courses

adopt more than one assessment method. On average, ST

and NST courses adopt 1.86 and 1.87 methods, respectively.

Both assessment methods that are suitable for assessing the

knowledge of theoretical topics (like Open/Closed Questions

and Discussion) and other methods more suitable for assessing

practical skills (like Projects, Homework, and Exercises) are

typically used. This result confirms the dual nature (both

Theoretical and Practical) of most of the courses analysed.

C. RQ3: What aspects of software testing are most commonly
taught?

To answer this question, we reviewed the contents of the

syllabi available on the Web pages describing each course.

Our aim was to map the topics taught with respect to the

categories of Test Design Techniques, Test Practices, Testing

Levels, and Testing Types proposed by the ISO/IEC/IEEE

29119-1 Standard on Software Testing, that we reported in

Table II.

Since not all course syllabi conform to the Standard termi-

nology and many provide only high-level lists of test topics,

the involved authors had to investigate further to abstract

the topics covered, and sometimes they had to make some

interpretations. In the latter cases, a third author double-

checked the interpretations made by two authors to exclude

possible classification errors. For example, the terms ”black

box testing” and ”white box testing” were often found. In

these cases, terms were interpreted as Specification Based and

Structure Based test design techniques, respectively. In other

cases, only the term ”statement testing” was found and it was

assumed that the Structure Based category was also covered

in the course.

Table VI shows the number and percentage of ST courses

and NST courses in which each testing topic is covered.

1) Test Design Techniques: With respect to the three main

Standard categories of Test Design Techniques (e.g., Specifica-

tion Based, Structure Based, and Experience Based), we found

that they are included in 95%, 100%, and 9% of ST course

topics, respectively, indicating a slight prevalence of Structure

Based compared to Specification Based. As to the Specifica-

tion Based techniques, the most frequently taught topics are

Equivalence Partitioning (in 50% of ST courses), followed by

Boundary Value analysis (27%), Decision Table testing (27%),

Combinatorial testing (27%) and Random Testing (18%).

The Syntax testing technique is taught in 3 courses (14%)

while Cause-effect graphing and Metamorphic testing are both

mentioned in only 2 courses (9%). Surprisingly, the topics of

Use Case testing, Scenario testing, and Requirements-based

testing are only explicitly mentioned in one course each, but

we could not deduce whether they are actually so uncommon,

or they are rather described in the syllabi as belonging to the

more general category of Specification Based techniques.

Regarding the Structure Based techniques, the most fre-

quently taught are Statement testing (23%), Branch testing

(23%), Decision testing (18%), Branch Condition (18%),

Branch condition combination (18%) and MC/DC testing

(14%). Data-flow testing is also quite common, being taught

in 23% of ST courses.

As to the category of Experience Based, we encountered

it in only 2 ST courses (9%), while Error Guessing is never

mentioned.

Regarding testing techniques not explicitly mentioned in the

standard, we found 4 courses where mutation-based testing

techniques are taught and reported these in the category Other

of the Table (4 out of 22, 18% of courses).

Regarding the NST courses, since testing is not the main

focus of these courses, we often found in the syllabi only

references to generic test design techniques, like Specification

Based, found in 35 courses (37%), or Structure Based tech-

niques found in 29 (31%) of courses.

65

TABLE VI
TESTING TOPICS OCCURRENCE IN COURSE SYLLABI

ST % NST %
Test Specification Based 21 95% 35 37%

Design Equivalence Partitioning 11 50% 1 1%
Technique Classification tree method 1 5% 0 0%

Boundary value analysis 6 27% 2 2%
Syntax testing 3 14% 0 0%
Combinatorial testing 6 27% 2 2%
Decision table testing 6 27% 0 0%
Cause-effect graphing 2 9% 0 0%
State transition testing 8 36% 0 0%
Scenario testing 1 5% 0 0%
Use case testing 1 5% 0 0%
Random testing 4 18% 0 0%
Metamorphic testing 2 9% 0 0%
Requirements-based testing 1 5% 3 3%

Structure Based 22 100% 29 31%
Statement testing 5 23% 9 9%
Branch testing 5 23% 6 6%
Decision testing 4 18% 7 7%
Branch condition testing 4 18% 2 2%
Branch condition combination testing 4 18% 0 0%
MC/DC testing 3 14% 1 1%
Data flow testing 5 23% 0 0%

Experience Based 2 9% 0 0%
Error guessing 0 0% 0 0%

Other 4 18% 12 13%
Testing Model-based testing 7 32% 5 5%
Practice Scripted testing 3 14% 6 6%

Exploratory testing 3 14% 1 1%
Experience-based testing 1 5% 0 0%
Manual testing 3 14% 6 6%
A/B testing 0 0% 4 4%
Back-to-back testing 0 0% 0 0%
Mathematical-based testing 3 14% 0 0%
Fuzz testing 2 9% 0 0%
Keyword-driven testing 0 0% 0 0%
Automated testing 15 68% 20 21%
Other 6 27% 26 27%

Testing Unit testing 13 59% 48 51%
Level Integration testing 10 45% 22 23%

System testing 10 45% 18 19%
System integration testing 4 18% 0 0%
Acceptance testing 7 32% 12 13%
Other 4 18% 12 13%

Testing Functional testing 8 36% 40 42%
Type Accessibility testing 0 0% 1 1%

Compatibility testing 0 0% 0 0%
Conversion testing 0 0% 0 0%
Disaster recover testing 0 0% 0 0%
Installability testing 0 0% 0 0%
Interoperability testing 0 0% 0 0%
Localization testing 0 0% 0 0%
Maintainability testing 0 0% 0 0%
Performance related testing 4 18% 6 6%
Portability testing 0 0% 0 0%
Procedure testing 0 0% 0 0%
Reliability testing 0 0% 2 2%
Security testing 2 9% 9 9%
Usability testing 1 5% 1 1%
Other 5 23% 9 9%

2) Testing Practice: Automated Testing is the most com-

mon testing practice included in the syllabi of both types of

mapped courses. It is explicitly mentioned in 15 ST courses

(68%) and 20 NST courses (21%). This datum indicates that

automated testing is commonly taught in specialized courses

of testing but less frequently in non-specialized ones.

The second most common practice is Model-based testing,

which was found in 7 ST courses (32%) but only in 5 NST

courses (5%). Conversely, Scripted testing is taught in 3 ST

courses but also in 6 NST ones.

Other testing practices that are less frequently taught

in ST courses include Exploratory testing, Manual testing,

Mathematical-based testing (each of them in 3 ST courses),

Fuzz testing (in 2 courses) and Experience-based testing

(only in one ST course). Regarding NST courses, except for

6 courses mentioning Manual testing and a single course

mentioning Exploratory testing, none of the latter practices

was found in the mapped courses.

Overall, we found no mentions at all of Back-to-back and

Keyword-driven testing, while A/B testing is included in the

syllabus of only 4 NST courses.

We also observed mentions of ’Other’ common testing

practices, such as Regression Testing (in a total of 10 courses)

and Test Driven Development (in a total of 3 courses).

3) Testing Level: Regarding Testing Levels, there are dif-

ferent scenarios in ST and NST courses. In ST courses

Unit testing, Integration testing and System testing are often

included in the syllabi (respectively in 59%, 45% and 45%

of the mapped ST courses), whereas in NST courses Unit

testing (in 48 courses, 51%) is more frequent than Integration

testing (in 22 courses, 23%) and System testing (18 courses,

18%). Analogously, Acceptance testing was more often found

on average in ST courses (in 7 courses, 32%) than in NST

courses (12 courses, 13%). Finally, System Integration testing

was found only in 4 ST courses (18%).

4) Testing Type: Finally, regarding testing types, we found

that Functional testing was by far the most cited type of testing

in course syllabi: we found it in 8 ST courses (36%) and 40

NST courses (42%). According to the Standard [21], func-

tional testing is used to check the implementation of functional

requirements, while non-functional types of testing are used to

check that requirements in other areas, like performance and

security, are met.

However, based on the syllabus reviews and our own experi-

ence in software testing, we can assume that many ST and NST

courses are predominantly based on functional testing rather

than non-functional testing. As a consequence, the reference

to this type of testing by all these courses should be reported,

even if it is not explicitly declared.

The other 3 testing types that were sometimes found in the

mapped courses included Performance related testing (found

in 4 ST and 6 NST courses), Security testing (found in 2 ST

courses and 9 NST courses, mostly devoted to secure software

design and development) and Usability testing (only in one

ST course and in one NST course). Accessibility testing is

mentioned in a single NST course only.

The remaining types of testing proposed by the standard,

including Compatibility, Conversion, Disaster Recovery, In-

stallability, Interoperability, Localization testing, Maintainabil-

ity, Portability, Procedural, and Reliability testing, were not

mentioned at all.

D. Threats to validity

Although we planned and executed the mapping carefully,

some threats could affect the validity of the results [22], [23].

Construct Validity. The lack of a standard language and

terminology in the syllabi descriptions found on the Web could

affect the construct validity of the course mapping. To mitigate

this threat, we decided that two researchers who perfectly

66

understand the language of the course will gather the infor-

mation to ensure that the information is collected correctly

without misinterpretation, and we used the ISO/IEC/IEEE

29119 Standard to classify the subjects taught.

In addition, we are aware that educators may interpret some

terms reported in the syllabi in different ways, which could

threaten our study. For example, our collected data on hours

of theory and practice uses directly the information provided

online, without interpretation. Therefore, there is a risk that

different educators consider the terms differently. To mitigate

this threat, we intend to survey or interview teachers in future

work.

We also recognise that a possible threat is that the infor-

mation publicly available may not fully reflect the contents of

the courses. Regardless, these still provide a good indication

of the structure of each course and, as these are provided to

potential applicants, we assume that the information is most

likely valid and trusted.

Internal Validity. In order to minimize the threats asso-

ciated with processing the available course information, we

decided to only work with the public information available

on the websites. While all of the courses had basic infor-

mation available online and, therefore, none of the selected

universities’ programmes or courses had to be removed for

the lack of information, the level of detail provided varied. In

some courses, the information was abstract, making it more

challenging to obtain detailed information about the testing

topics covered in the course. To ensure the accuracy of the

interpretation of the online information, all the entries were

checked by at least two researchers and an extra researcher

in case of doubts. In addition, we make all the data collected

available to the other researchers to verify the validity of the

results.

External Validity. To avoid bias in the selection of uni-

versities, we randomly selected those ranked in Scimago,

which comprises universities that often have well-established

teaching practices and resources, so our study still reflects

trends and standards in teaching software testing that are likely

to be observed in other higher education institutions.

The courses we selected may not be generalized to other

countries, nor may they provide an accurate reflection of the

current general landscape of software testing education in

Europe at large. To mitigate this threat, we defined a protocol

for the selection of the universities and courses, and reported

the criteria and methods used for course selection, so that these

can be used by other researchers to replicate the study and

increase the body of knowledge of the state of the practice of

software testing teaching.

V. DISCUSSION

As to the diffusion of software testing courses investigated

in RQ1, the study results show that courses specifically

focused on software testing are available at only 39% of

the universities surveyed and are mostly offered at Master

degree level. This percentage is slightly lower that the one

reported by Ardic and Zaidman, who found software testing

dedicated courses in 50% of the top 100 of the Times Higher

Education university ranking [15], as well as lower than the

56% of universities with dedicated ST courses in the Sweden

context [16]. While it was noteworthy that software testing

fundamentals were included in at least one course at every

university (i.e., in 94% of surveyed universities), most of the

existing software testing techniques are not taught to students

and future IT professionals. This is far too limited considering

that we live in a world surrounded by software whose quality

could potentially disrupt our lives.

As to the pedagogical approaches investigated by RQ2, as

we stated before, we did not find the number of hours of the-

oretical classes and practical classes for each mapped course.

Nevertheless, for those for which we found this information

(59% of ST courses), we observe that they spend similar

amount of hours for theoretical and practical classes, with a

ratio of 1.03 between them. As it has been discussed in [24],

the emphasis in teaching testing should be placed primarily on

the practical part. This approach is both a more challenging

and attractive strategy for students, and also helps students

to develop the ability to apply testing concepts in real-world

development scenarios.

The results present interesting insights about assessment

methods in both ST and NST courses. Projects are used as the

assessment method in almost 60% of courses. This is aligned

with the practical experience needed to learn complex topics,

since during the development of projects students can practice

the application of concepts.

Regarding the information on reference books, we cannot

get a clear list of software testing books used. If we look at

the NST courses, they mainly use general software engineering

books. On the other hand, if we look at the ST courses, not all

of them provide information about the books, and those that

do, use a large variety of books related to the topics taught.

As regards the software testing topics that are most com-

monly taught (RQ3), specification-based and structure-based

Test Design techniques included in the ISO Standard are taught

in almost all the analysed courses, whereas the experience-

based category is present in only 2 of the 117 considered

courses. Analogously, as to the Testing Practices listed by the

Standard, the results of the mapping study show that only a

small percentage (3,41%) of courses teach exploratory testing

(4 out of 117 courses). Our analysis reflects that testing courses

of universities are more inclined towards the analytical school,
where the emphasis is on better testing through improved

precision of specifications in stead of the context-driven school
that emphasizes exploratory testing, which promotes concur-

rent learning, test design, and test execution [25].

A final consideration concerns the Testing Types that are

commonly taught. Our study revealed areas of deficiency that

require attention to bring current academic offerings closer to

the real needs of the industry. Some clear findings include

the lack of accessibility testing, security testing, and disaster

recovery testing, among others.

Our study can help academic institutions to understand the

gaps in the curriculum, and consider some ways to close

67

these gaps by paying attention to the underrepresented testing

topics and techniques. In addition, sharing this knowledge

can encourage collaborations between different educational

institutions.

VI. CONCLUSIONS

This paper presents a landscape of software testing teaching

practices in four Western European countries, based on the

mapping of 117 courses syllabi within 49 Universities.

Our analysis is based on the course descriptions provided

in the summer and autumn of 2023. The content of courses is

typically adjusted as time evolves. Therefore, the results have

to be considered as a snapshot of the situation in 2023.

With regard to related work (SLRs on software testing

education and mapping of software testing courses), our study

provides an updated overview of courses in four European

countries and contributes with a clear characterisation of the

academic properties of courses. To the best of our knowledge,

this is the first study based on the mapping of more than 100

courses and providing a fine-grained characterisation of testing

topics based on the 2021 revision of the ISO/IEC/IEEE 29119

International Standard on Software Testing.

A difficulty we have found in analyzing the academic char-

acteristics of courses is that the information is not provided in

a standardised way, nor do we have a consolidated repository

of courses in Europe. This challenged us to define a protocol to

search the information, starting with the partner countries from

the ENACTEST Project. Similarly to the Bologna Process3 the

European Credit Transfer and Accumulation System (ECTS)

that was adopted across the continent some years ago, a stan-

dard way of defining the academic characteristics of courses

should be systematically adopted to facilitate the analysis. We

consider this as an important future direction for educational

contexts.

In future work we intend to survey the teachers of the

courses to gather further information that did not emerge from

the analysis of the syllabi and to investigate the reasons for

the choices they made.

We also found that most courses focus exclusively on testing

according to the analytical school of thought. This is overly

restrictive and one-sided, especially in today’s rapidly evolving

technology landscape. With the proliferation of AI systems,

it is imperative that contextual approaches be incorporated

even more prominently. The emergence of AI introduces a set

of quality characteristics that go beyond traditional, clear-cut

specifications. Attributes such as intelligence, accountability,

and explainability are integral to AI testing and can only be

adequately assessed through context-based exploratory testing.

As AI technologies continue to shape our world, it will

become even more important for testing methodologies to

adapt and encompass these complex, context-dependent facets

to ensure that software testing education remains aligned with

the evolving needs of the industry.

3European Higher Education Area and Bologna Process,
https://www.ehea.info/index.php

The key takeaways from this study are:

• The systematic adoption of a standardized approach for

describing the academic characteristics of courses is

essential to streamline the analysis process of testing

courses and the reference books used.

• The use of projects is the most prevalent method of

assessing knowledge of testing practices, likely because

of its effectiveness.

• Inclusion of exploratory testing topics in course content

is necessary, which includes the context of the systems

instead of just emphasizing the precision of testing spec-

ifications.

• The evaluation of software testing topics may reveal

shortcomings that require attention to better align current

academic offerings with real industry needs that we are

currently investigating in the context of ENACTEST

Project.

• Increasing the academic offering of specialized software

testing courses may be necessary to improve the overall

preparation of students.

Immediate future work will consider the creation of capsules

to improve testing education in a seamless way across courses

of computer science curricula. These capsules will take into

account the less taught testing topics. We also plan to conduct

empirical studies to uncover students’ sensemaking during

testing, as well as to develop a cognitive model of testing that

may be useful for improving students’ learning effectiveness.

ACKNOWLEDGMENT

This work has been partially funded by ENACTEST (Euro-

pean innovation alliance for testing education), ERASMUS+

Project number 101055874, 2022-2025 and by GATT (GAm-

ification in Testing Teaching), funded by the University of

Naples Federico II Research Funding Program (FRA).

REFERENCES

[1] “Tricentis Software Fail Watch Finds 3.6 Billion People
Affected and $1.7 Trillion Revenue Lost by Software
Failures Last Year,” https://www.globenewswire.com/news-
release/2018/01/24/1304535/0/en/Tricentis-Software-Fail-Watch-
Finds-3-6-Billion-People-Affected-and-1-7-Trillion-Revenue-Lost-
by-Software-Failures-Last-Year.html, 2018, accessed: 2024-01-18.

[2] H. Krasner, “Cost of Poor Software Quality in the U.S.: A 2022 report,”
Consortium for Information and Software Quality TM (CISQTM), pp.
1–61, 2022, accessed: 2024-01-18. [Online]. Available: https://www.
it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report/

[3] ——, “The cost of poor software quality in the US: A 2020 report,”
Proc. Consortium Inf. Softw. QualityTM (CISQTM), pp. 1–46, 2021.

[4] “CVE,” https://www.cve.org/, accessed: 2024-01-18.
[5] V. Garousi, M. Felderer, M. Kuhrmann, K. Herkiloğlu, and S. Eldh,

“Exploring the industry’s challenges in software testing: An empirical
study,” Journal of Software: Evolution and Process, vol. 32, no. 8, 2020.

[6] K. Juhnke, M. Tichy, and F. Houdek, “Challenges concerning test case
specifications in automotive software testing: assessment of frequency
and criticality,” Software Quality Journal, vol. 29, pp. 39–100, 2021.

[7] A. Afzal, C. Le Goues, M. Hilton, and C. S. Timperley, “A study on
challenges of testing robotic systems,” in 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE, 2020,
pp. 96–107.

[8] T. Cowling, “Stages in teaching software testing,” in 2012 34th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2012, pp.
1185–1194.

68

[9] L. P. Scatalon, J. C. Carver, R. E. Garcia, and E. F. Barbosa, “Software
testing in introductory programming courses: A systematic mapping
study,” in 50th ACM Technical Symposium on Computer Science Ed-
ucation, 2019, pp. 421–427.

[10] V. Garousi, A. Rainer, P. Lauvås Jr, and A. Arcuri, “Software-testing
education: A systematic literature mapping,” Journal of Systems and
Software, vol. 165, 2020.

[11] B. Marı́n, T. E. J. Vos, A. C. Paiva, A. R. Fasolino, and
M. Snoeck, “ENACTEST-European Innovation Alliance for Testing
Education.” in RCIS Workshops, 2022. [Online]. Available: https:
//ceur-ws.org/Vol-3144/RP-paper5.pdf

[12] B. Marı́n, T. E. J. Vos, M. Snoeck, A. C. R. Paiva, and A. R.
Fasolino, “ENACTEST project - european innovation alliance for testing
education,” in Research Projects Exhibition Papers Presented at the 35th
International Conference on Advanced Information Systems Engineering
(CAiSE 2023), ser. CEUR Workshop Proceedings, vol. 3413, 2023, pp.
91–96. [Online]. Available: https://ceur-ws.org/Vol-3413/paper13.pdf

[13] V. Garousi and A. Mathur, “Current state of the software testing edu-
cation in north american academia and some recommendations for the
new educators,” in 2010 23rd IEEE Conference on Software Engineering
Education and Training, 2010, pp. 89–96.

[14] P. H. D. Valle, E. F. Barbosa, and J. C. Maldonado, “Cs curricula of the
most relevant universities in brazil and abroad: Perspective of software
testing education,” in 2015 International Symposium on Computers in
Education (SIIE), 2015, pp. 62–68.

[15] B. Ardic and A. Zaidman, “Hey teachers, teach those kids some soft-
ware testing,” in 5th International Workshop on Software Engineering
Education for the Next Generation (SEENG). IEEE, 2023, pp. 9–16.

[16] A. A. Barrett, E. P. Enoiu, and W. Afzal, “On the current state of aca-
demic software testing education in sweden,” in 2023 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, 2023, pp. 397–404.

[17] “ENACTEST project,” https://enactest-project.eu, last accessed: 2024-
01-18.

[18] I. S. Elgrably and S. R. B. de Oliveira, “A diagnosis on software
testing education in the brazilian universities,” in 2021 IEEE Frontiers
in Education Conference (FIE), 2021, pp. 1–8.

[19] S. M. Melo, V. X. S. Moreira, L. N. Paschoal, and S. R. S. Souza,
“Testing education: A survey on a global scale,” in Proceedings of the
XXXIV Brazilian Symposium on Software Engineering, ser. SBES ’20.
Association for Computing Machinery, 2020, p. 554–563. [Online].
Available: https://doi.org/10.1145/3422392.3422483

[20] V. R. B. G. Caldiera and H. D. Rombach, “The goal question metric
approach,” Encyclopedia of software engineering, pp. 528–532, 1994.

[21] “Iso/iec/ieee international standard - software and systems engineer-
ing –software testing –part 1:general concepts,” ISO/IEC/IEEE 29119-
1:2022(E), pp. 1–60, 2022.

[22] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[23] P. Ralph and E. Tempero, “Construct validity in software engineering
research and software metrics,” in 22nd International Conference on
Evaluation and Assessment in Software Engineering, 2018, pp. 13–23.

[24] B. Marı́n, S. Alarcón, G. Giachetti, and M. Snoeck, “Tescav: An
approach for learning model-based testing and coverage in practice,” in
14th International Conference on Research Challenges in Information
Science, RCIS. Springer, 2020, pp. 302–317.

[25] N. Doorn, T. E. Vos, and B. Marı́n, “Towards understanding
students’ sensemaking of test case design,” Data and Knowledge
Engineering, vol. 146, p. 102199, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0169023X23000599

69

