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Recent years have seen a surge in research on the role of quantum geometry in condensed matter
physics. For instance, theAharonov-Bohmeffect is aphysical phenomenonwhere the vector potential
induces a phase shift of electron wavepackets in regions with zero magnetic fields due to an
obstruction in space associated with a magnetic flux. A similar effect can be observed in solid-state
systems, where the topology of the Berry connection can influence electron dynamics. These are
paradigmatic examples of how the dynamics can be affected by the system’s geometry. Here, we
show that in chiral-symmetric processes the quantum metric has a measurable effect on the mean
chiral displacement of delocalized wavefunctions. This finding is supported by a photonic experiment
realizing a topological quantum walk and demonstrates an effect that can be attributed directly to the
geometry of the state space.

Gauge fields play a fundamental role in modern physics. Besides being key
mathematical objects for electromagnetism, quantum field theories, and
electronic band structure, there has been a long debate on whether gauge
fields should constitute the fundamental elements of the theory. In 1959, Y.
Aharonov and D. Bohm1 showed that electron wavefunctions can experi-
ence phase shifts induced by the vector potential evenwhen crossing regions
of space with zero electric or magnetic fields. This effect has been later
verified in several experiments2–9, and can be understood as a geometric-
phase effect due to the presence of an obstruction in space10–12. Similar
phenomena have been observed for water waves around flux vortices13 and
in optical systems14,15. The Aharonov-Bohm (AB) effect thus stimulated an
ongoing debate on the physical nature of electromagnetic potentials16–22.

The modern electronic band theory in solid-state physics predicts a
plethora of phenomena associated with quantities analogous to the mag-
neticfield and the vector potential in electromagnetism.These quantities are
the Berry curvatureΩ and the Berry connectionA11, respectively. The Berry
curvature is a gauge-invariant field arising from the geometry of band
eigenstates in the quasi-momentum space, which can introduce anomalous
velocity effects to the motion of wavepackets when an external field is
applied on the system11,23–27. The integral of the Berry curvature over the
quasi-momentum space gives the topological invariant of Chern
insulators27–29. This analogy can be exploited to design AB experiments in
lattice systems, with the role of the vector potential played by the Berry
connection. For instance, the AB effect has been observed in an atomic
simulator of graphene, where Ω is zero everywhere and singular in

correspondencewith theDiracpoints30. Starting fromtheworkof ref. 31, the
Berry curvature has been revised as related to the imaginary part of a more
general object, the quantum geometric tensor, whose real part provides a
gauge-invariantmetric in any submanifold of quantum states. This quantity
is typically referred to as the quantum metric. The role of the quantum
metric in quantum dynamics has sparked a strong interest in recent
years32–37.

In this work, we report the effect of the quantummetric on themotion
of wavepackets. We focus on tight-binding models exhibiting chiral sym-
metry, and analyze the temporal evolution ofwavepackets sharply peaked in
the quasi-momentum space. Chiral symmetry is characterized by the
existence of a unitary operator that pairs states with opposite energy
(measuredwith respect to the Fermi level), and is typical of systemswith two
—or an even number of—sites per unit cell, such asmodels of polyacetylene
chains29,38 and graphene39.We evaluate the time evolutionof themean chiral
displacement (MCD)40–42, which gives the weighted difference in the mean
position of the wavepacket distribution on the two sublattices. We show
that, in the long-time limit, theMCDis directly related to the elements of the
quantum metric. As a consequence of this result, the MCD can be used to
measure the full quantum geometric tensor of chiral-symmetric systems.

This result is firstly verified with numerical simulations of different
prototypical solid-statemodels, then experimentally observed in a photonic
quantumwalkwhere the lattice is encoded in the light transversewavevector
and the internal degree of freedom (sublattice) is associated with the
optical polarization27. A chiral-symmetric unitary evolution operator is
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implemented via patterned anisotropic devices. It is shown that the time-
averagedMCD can be used to directlymeasure the quantummetric in one-
dimensional (1D) topological quantumwalks and extract the corresponding
topological invariant.

Results
Theory
Consider a lattice system of arbitrary spatial dimension D formed by two
sublattices, that is with two sites per unit cell. Precisely, the quantum states
are elements of the Hilbert space H‘ �Hs, where H‘ is spanned by
eigenstates of the lattice position, and Hs is associated with a pseudo-spin
degree of freedom, with dimðHsÞ ¼ 2.

Let us assume that the system possesses chiral symmetry, i.e., there
exists a unitary operator Γ̂, acting onHs, such that Γ̂Û ¼ Û

�1
Γ̂, where Û is

the unitary describing the single-particle evolution. In general, Γ̂ ¼ vΓ � σ̂,
where the unit vector vΓ identifies the eigenstates of the chiral operator on
the Bloch sphere and σ̂ ¼ ðσx; σy; σzÞ is the vector of the three Pauli
matrices. With an appropriate rotation in the pseudo-spin space, one can
choose Γ̂ ¼ σ̂z :¼ diag ½1;�1�. Translation invariance and chiral sym-
metry allow us to write Û in the block-diagonal form

Û ¼
Z
BZ

dDq

ð2πÞD UðqÞ � ∣q
�
q
�
∣; ð1Þ

where

UðqÞ ¼ expð�iEðqÞnðqÞ � σ̂Þ; ð2Þ

nðqÞ ¼ ðnxðqÞ; nyðqÞ; 0Þ: ð3Þ

In Eqs. (1)-(2), q is the quasi-momentum, defined in the adimensional
Brillouin Zone (BZ) –for square lattices, BZ = [−π, π]⊗D–, U is an
operator acting on Hs, with eigenvalue E and eigenstate n, with ∣n∣ ¼ 1.
Equation (3) is a consequence of chiral symmetry: the eigenstates are
represented on the Bloch sphere as unit vectors n(q), which lie in a plane
perpendicular to the axis specified by the chiral operator (here chosen as
the z-axis), i.e., vΓ ⋅ n(q) = 0 for each q. The manifold of the system’s
eigenstates, defined as ∣nðqÞi ¼ ðe�iϕðqÞ∣ "i þ ∣ #iÞ= ffiffiffi

2
p

, with ϕ :¼
arctanðny=nxÞ and Γ̂ ¼: ∣ "ih" ∣� ∣ #ih# ∣, can be equipped with a
metric structure. Such quantum metric is derived from the quantum
geometric tensor ηij ¼ h∂iψ∣∂jψi �AiAj, where Ai ¼ ihψ∣∂iψi is the
Berry connection. In our case, ∣ψi � ∣nðqÞi. The quantum metric thus
provides a gauge-invariant geometric description of the state space.
Indeed, the infinitesimal distance between two points in the state space
(parametrized by q) is given by dℓ2 = Re[ηij(q)]dqidqj

31. In a chiral-
symmetric system, the quantum geometric tensor is a real quantity and is
given by

ηijðqÞ ¼
1
4
∂qiϕðqÞ∂qjϕðqÞ ¼:

1
4
γiðqÞγjðqÞ; ð4Þ

where γiðqÞ :¼ ðnðqÞ× ∂qinðqÞÞ � vΓ. The quantity γi(q) has a simple geo-
metrical interpretation, being proportional to the solid angle enclosed by the
vectors vΓ, n(q), and n(q+ dq) in the unit sphere43. Note that, within our
gauge choice, γiðqÞ ¼ 2AiðqÞ.

In 1D lattices, chiral symmetry allows defining a topological invariant,
the winding number ν, associated with the number of times the vector n(q)
spans the plane when the quasi-momentum runs across one BZ. It has been
proven that the MCD provides an observable quantity tracking the topo-
logical invariant of 1D chiral systems40–42,44–46. Here, we show that theMCD
can also be employed to probe the quantum metric.

For two-band models, the MCD is defined as

CiðtÞ ¼ 2 ψðtÞ�
∣Γ̂x̂i∣ψðtÞ

�
; ð5Þ

where x̂i is the i-th component of the lattice position operator and
∣ψðtÞ� ¼ Û

t ∣ψð0Þ�, ∣ψð0Þ� being the system wavefunction at time t = 0.
Equation (5) canbe interpretedas theweighteddifferencebetween themean
positions on the two sublattices (where the weights are given by the prob-
ability of being in either sublattice). The MCD asymptotically converges to
thewindingnumber if ∣ψð0Þ� is either a localized state40 or,more generally, if
it can be mapped to a localized state via a translation-invariant unitary
operator42.

In this work, a different scenario is considered, where the initial state is
a wavepacket exhibiting a narrow distribution in the reciprocal lattice,
∣ψð0Þ� ¼ R BZdDq=ð2πÞD Gw;q0

ðqÞ∣q�� ∣ϕ0
�
, where ∣ϕ0

�
is a sublattice

state andGw;q0
ðqÞ a function peaked around q0 with characteristic widthw.

We obtain—see Methods “Proof of the main result” for the detailed deri-
vation–

CiðtÞ ¼ 2
Z
BZ

dDq

ð2πÞD ∣Gw;q0
∣2sin2ðtEÞγi

¼
Z
BZ

dDq

ð2πÞD ∣Gw;q0
∣2γi 1� cosð2EtÞð Þ:

ð6Þ

The last integral in Eq. (6) gives an oscillating contribution that generally
decreases in amplitude as ∼ 1=

ffiffi
t

p
, and thus, asymptotically, we obtain

Ci ∼
Z
BZ

dDq

ð2πÞD ∣Gw;q0
ðqÞ∣2γiðqÞ: ð7Þ

For initial states narrowly peaked in the reciprocal lattice (w→ 0), the
MCD can thus probe the local value of γi:

Ci ∼ γiðq0Þ: ð8Þ

If ∣Gw;q0
∣2 ¼ gwðq� q0Þ, Equation (6) can be seen as the convolution

between the function gw and sin2ðtEÞγi.Hence, one can extract sin2ðtEÞγi for
finite widthsw via a deconvolution analysis of themeasured Ci as a function
of q0. The factor sin2ðtEÞ is either q–independent—in the case of flat bands
—or averages to 1/2 in the long-time limit. The quantummetric can thus be
extracted also in situations with evolutions limited in time by evaluating the
time average of the deconvolved MCD. For chiral-symmetric systems, the
quantum geometric tensor can be effectively reconstructed as

ηij ¼
1
4
~Ci
~Cj; ð9Þ

where ~Ci is the time-averaged MCD along xi.
We note that the MCD carries a sign ambiguity since the same system

is symmetric under the action of both Γ̂ and �Γ̂. However, this does not
affect the sign of the quantum geometric tensor components.

A comparison between the time-averaged MCD of two typical chiral
models is shown in Fig. 1 (see Methods “Details on numerical simulations”
for more details). In both cases, the initial state is a Gaussian wavepacket
sharply peaked around a given quasi-momentum value q0,
Gw;q0

¼ N expð�ðq� q0Þ2=w2Þ, where N is a normalization factor. In
panels a and b, the Su-Schrieffer-Heeger (SSH) model for a composite 1D
lattice is considered38. The parameters a and b correspond to the intracell
and intercell hopping amplitudes, respectively. The MCD is evaluated for
different values of q0 spanning the BZ. The agreement between ~C and the
quantity γ is evident after t = 30/a. In Fig. 1c, d, the same simulation is
performed for the two-band tight-binding graphene. The time-averaged
MCD converges to γ. Although not evident in the figure, this convergence
fails in the extreme vicinity of the Dirac points, where γ diverges and the
MCD falls to zero. As shown in Methods “Details on numerical simula-
tions”, this is due to the sin ðEtÞ2 factor rapidly falling to zero.
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Experimental results
The effect of the quantum metric on the MCD of wavepackets is experi-
mentally investigated in a photonic quantumwalk (QW). In this experiment,
the sublattice degree of freedom is encoded into the polarization of light. The
lattice can be encoded in an infinite-dimensional degree of freedom, such as

the (discretized) transverse wavevector27,47,48. Each lattice site thus corre-
sponds to an opticalmodewhich can be approximated as a plane wave with a
slightly tilted wavefront. In other words, a position x on the lattice maps into
a transverse wavevector equal to k= 2πx/Λ—whereΛ is a constant related to
the inverse of the lattice spacing. Following the approach recently devised in
ref. 49, the chiral-symmetric unitary is implemented by a minimal stack of
three patterned waveplates, specifically a half-wave plate sandwiched between
two quarter-waveplates. This scheme allows realizing a space-dependent
polarization transformation which maps into the target evolution49.

The chiral process considered here is theQWintroduced in ref. 40. The
unit step U = T ⋅W consists of a polarization rotation
W :¼ ðσ0 þ iσxÞ=

ffiffiffi
2

p
, followed by a polarization-dependent lattice trans-

lation T :¼Pxð∣x þ 1i xh ∣� σ� þ ∣x � 1i xh ∣� σþÞ, where σ± = σx∓ iσy.
Here, it is assumed that thepositive andnegative eigenstates of σz are left and
right circular polarizations, ∣Li and ∣Ri, respectively. While long evolutions
are typically achieved by stacking single-step waveplates40,42,47, here, the
more compact approach of designing only three plates implementing
either t = 10 or t = 11 steps is adopted. For our protocol, it is sufficient to
consider the average of 2n-step and (2n+ 1)-step processes (with n an
integer number), e.g., U10 and U11, to observe adequate convergence
of the time-averaged MCD to the local quantum metric. This choice is
justified by the fact that the energy band dispersion allows for a suitable
wavepacket width such that the oscillating terms in Eq. (6) feature opposite
contributions, almost canceling each other when taking the average
~C ¼ ðCðt ¼ 2nÞ þ Cðt ¼ 2nþ 1ÞÞ=2. A rigorous proof is provided in
Methods “Oscillating terms for the QWprotocol” via asymptotic estimates,
also confirmed by numerical simulations.

A simplified experimental setup is shown in Fig. 2a (see Methods
“Details on the experimental setup” for more details). A collimated laser
beam (λ = 810 nm) is prepared in an arbitrary polarization state and pro-
pagates through three patterned waveplates implementing Ut. A projection
is then performed onto the two eigenstates of the chiral operator:

∣ "� ¼ cos
π

8

� �
∣Li � i sin

π

8

� �
∣Ri; ð10Þ

∣ #� ¼ sin
π

8

� �
∣Li þ i cos

π

8

� �
∣Ri: ð11Þ

The lattice space, being associated with the transverse wavevector of the
light beam, is accessed via an optical Fourier transform, i.e., by measuring
the intensity distribution I↑/↓(x) in the focal plane of a lens
placed after the polarization projection stage. The MCD is experimentally
retrieved by measuring the weighted difference between the center of mass
of the intensity distributions of the two chiral projections:
C ¼ 2

P
x ðI"ðxÞ � I#ðxÞÞx, where it is assumed that the intensities are

normalized according to∑x(I↑(x)+ I↓(x)) = 1. Here, with a slight abuse of
notation, we identify the coordinate x at the lens focus with the index
specifying the correctmapping. This identification is obtainedby expressing
x in units of the lattice spacing. The latter depends on the inverse of the
characteristic period Λ = 0.25 cm of the plates implementing the QW evo-
lution and the focal length f = 25 cm of the lens implementing the Fourier
transform. The distance Λ also corresponds to the physical extension of a
single BZ in our setup27. In this implementation, the lattice sites aremapped
into states carrying x units of transverse momentum 2π/Λ, and as a con-
sequence, the quasi-momentum q corresponds to the transverse positionX
in the region of space where the waveplates are positioned—see Methods
“Relationship between experimental and simulated coordinate spaces” and
ref. 27 for more details. The plates implementing the QW are liquid-crystal
metasurfaces exhibiting a position-dependent optic-axis orientation θ(X),
plotted in Fig. 2b. The optical retardation δ of these devices is uniform but
can be tuned. The first and last plates, L1 and L3, act as quarter-wave plates,
δ1,3 = π/2,while the intermediate plate,L2, acts as ahalf-waveplate,δ2 = π. In
this setup, the widthw of the initial wavefunction in the reciprocal lattice is
proportional to the laser beam waist w0 (measured on the patterned
waveplates’ plane). With a large waist, w0 ≥Λ, we measure a global MCD,

Fig. 1 | Mean chiral displacement (MCD) and quantum metric in chiral models.
a Schematics of the Su-Schrieffer-Heeger (SSH) model. b Time-averaged MCD for
the SSH model, evaluated for wavepackets (w = 0.1) centered in different points of
the Brillouin zone (blue points), and compared with the square root of the quantum
metric (red curve) after t = 30/a. Insets show the dynamical evolution of the MCD
(gray lines), and its average in time (blue line), for selected quasi-momentum values.
c Schematics of two-band graphene model. d Comparison of time-averaged MCD
(50/τ≤t≤60/τ, where τ is the hopping amplitude between the two sublattices, w = π/
10) and γ in two-band graphene. Note that the color scale is truncated to the
maximum of the MCD since γ diverges in the proximity of the Dirac cones.
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which asymptotically yields the topological invariant ν = 1 associated with
the chosen QW40. For w0 <Λ, we can locally sample the BZ. We used w0

~0.13Λ. The value of q0 is simply changed by translating the three
metasurfaces in the X direction, thus introducing an effective transverse
displacement with respect to the beam propagation. The reciprocal lattice is
sampled in steps of ΔX = 0.12mm, for a total of n =Λ/ΔX = 21 points.
Figure 2c, d show the measured MCD for t = 10 and t = 11 steps,
respectively, compared with theoretical curves evaluated from Eq. (6).
Errors are reported as the standard deviations over four repeated
measurements. In Fig. 2e, the square root of the metric is compared with
the average ~Cðq0Þ :¼ ðCðq0; t ¼ 10Þ þ Cðq0; t ¼ 11ÞÞ=2. We observe a
good agreement with the theory. Some deviations can be ascribed to
imperfections in the fabrication process and relative misalignment of the
plates. Note that the measured ~Cðq0Þ, when integrated over the BZ, yields
ν = 1.15 ± 0.19, fully compatible with the expected value of the topological
invariant and with the experimental value measured for initial localized
states (see Methods “Experimental results for localized input states”).

Conclusion
It has been shown that the quantum metric affects the relative spatial dis-
tribution ofwavepackets on the two sublattices of chiral-symmetric systems.
This effect is capturedby theMCD.This result has been verifiednumerically
on solid-state models, specifically the SSH model and graphene, and
experimentally in a 1D photonic quantum walk. In analogy with the AB
effect, the MCD can be non-zero in regions where the Berry curvature
vanishes. In the particular case of 1D systems, where the Berry curvature is
not defined, this effect is still observed andproportional to the square root of
the quantum metric. Our work offers a method to measure the quantum
metric of unitary processes on lattice systems, from which geometrical and
topological features can be extracted. Future developments will concern the
generalization of this result to higher-dimensional sublattices, which will
allowdeveloping investigationmethods for chiral-symmetric twoand three-
dimensional topological insulators.

Methods
Proof of the main result
From Eq. (5), using Eq. (1) and the momentum representation of the
position operator, q

�
∣x̂i∣q0

� ¼ iδðq� q0Þ∂qi , we obtain

CiðtÞ ¼ 2i
Z
BZ

dDq

ð2πÞD ∣Gw;q0
∣2 ϕ0
�

∣U�t Γ̂∂qiU t ∣ϕ0
�

þ 2i
Z
BZ

dDq

ð2πÞD ϕ0
�

∣U�t Γ̂U t ∣ϕ0
� ∂qi ∣Gw;q0

∣2

2
;

ð12Þ

where we suppressed the dependency on the quasi-momentum to simplify
thenotation.UsingU t ¼ cosðEtÞσ0 � i sinðEtÞn � σ̂, whereσ0 is the identity
operator, and U�tΓ ¼ ΓU t , we obtain

U�t Γ̂∂qiU
t ¼ 1

2
Γ̂∂qi ðcosð2tEÞ � i sinð2tEÞn � σ̂Þ

� isin2ðtEÞðn× ∂qinÞ � vΓ
¼ 1
2
Γ̂∂qiU2t � isin2ðtEÞγi:

ð13Þ

In the last equality, we used γi ¼ ðn× ∂qinÞ � vΓ. Thus,

CiðtÞ ¼ 2
Z
BZ

dDq

ð2πÞD ∣Gw;q0
∣2sin2ðtEÞγi

þ 2i
Z
BZ

dDq

ð2πÞD ∣Gw;q0
∣2
1
2

ϕ0
�

∣Γ̂∂qiU2t ∣ϕ0
�

þ 2i
Z
BZ

dDq

ð2πÞD ϕ0
�

∣Γ̂U2t ∣ϕ0
� ∂qi ∣Gw;q0

∣2

2
:

ð14Þ

Fig. 2 | MCD induced by the quantum metric in a photonic quantum walk.
a Sketch of the experimental setup. The laser beam is prepared in an arbitrary
polarization state, set by a polarizer (P), a half-wave plate (HWP), and a quarter-
wave plate (QWP). To simulate wavepacket dynamics, the beam waist is adjusted so
as w0 <Λ. The overall chiral-symmetric evolution operator, Ut, is implemented via
three liquid-crystal metasurfaces. A rigid translation of the bulk of plates along theX
direction is equivalent to changing the value q0 for the wavepacket. After the QW, a
projection onto the chiral eigenstates, ∣ "� and ∣ #�, is performed, and the resulting
intensity is recorded in the focal plane of a lens (L), corresponding to the lattice space
of the QW. The difference in the centroid position of the two intensity distributions,
I↑ and I↓, gives the mean chiral displacement (MCD). b Optic-axis patterns θ(X) of

the liquid-crystal plates L1,2,3 implementing t = 10 and t = 11 steps. The distance
Λ = 0.25 cm corresponds to the largest spatial period and defines a BZ. The lattice
spacing in the transverse-wavevector domain is thus 2π/Λ. c, d The measured MCD
at t = 10 and t = 11 is compared with theoretical predictions. e The time-averaged
MCD obtained experimentally is compared with the average computed from a
complete simulation of the ideal QWevolution (dashed curve) andwith the quantity
γ, proportional to the square root of the quantummetric (red curve). c–e Error bars
are standard deviations over four repeated measurements. Where the bar is not
visible, it is smaller than the data point.
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Integration by parts shows that the last two terms cancel each other:

CiðtÞ ¼ 2
Z
BZ

dDq

ð2πÞD ∣Gw;q0
∣2sin2ðtEÞγi

¼
Z
BZ

dDq

ð2πÞD ∣Gw;q0
∣2γi

�
Z
BZ

dDq

ð2πÞD ∣Gw;q0
∣2 cosð2EtÞγi:

ð15Þ

Using the stationary phase approximation, it can be shown that the last
integral gives a contribution that oscillates in time and generally decreases in
amplitude as ∼ 1=

ffiffi
t

p
, fromwhich the final result of Eq. (7) is derived. Note

that, in the case of flat bands E(q) = constant, the asymptotic result is exact
apart from a sin2ðtEÞ multiplicative factor.

As discussed in the main text, if ∣Gw;q0
∣2 ¼ gwðq� q0Þ, the

quantum metric can be extracted from the time average of the decon-
volved MCD.

Details on numerical simulations
SSH Hamiltonian. The SSH model38 describes a composite 1D lattice
with two sites per unit cell. The lattice Hamiltonian is

H ¼
X
x

a∣x;Bi x;Ah ∣þ b∣x þ 1;Ai x;Bh ∣þ h.c. ; ð16Þ

where x 2 Z labels the lattice sites, the two sublattices are labeled asA andB,
and h.c. denotes the Hermitian conjugate. The coefficients a and b are the
intracell and intercell hopping amplitudes, respectively. The Bloch theorem
allows diagonalizing H as H ¼ R ðdq=2πÞHðqÞ � ∣q

�
q
�
∣, with

HðqÞ ¼ EðqÞnðqÞ � σ̂, where

EðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ab cosðqÞ þ b2

q
;

nxðqÞ ¼
aþ b cosðqÞ

EðqÞ ;

nyðqÞ ¼
b sinðqÞ
EðqÞ ;

nzðqÞ ¼ 0:

ð17Þ

The chiral operator is Γ = σz.

GrapheneHamiltonian. A simple nearest-neighbor tight-bindingmodel
for graphene, which only includes the two energy bands near the Fermi

energy, gives the following Bloch Hamiltonian H39:

Hðqx; qyÞ ¼ � τσx cos

ffiffiffi
3

p
qy
2

� qx
2

 !"

þ cos
qx
2
þ

ffiffiffi
3

p
qy
2

 !
þ cosðqxÞ

#

þ τσ2 sin

ffiffiffi
3

p
qy
2

� qx
2

 !"

� sin
qx
2
þ

ffiffiffi
3

p
qy
2

 !
þ sinðqxÞ

#
;

ð18Þ

where τ denotes the hopping amplitude. The energy bands of graphene
display Dirac cones in the points K ¼ ð2π=3; 2π=3 ffiffiffi

3
p Þ and K0 ¼

ð2π=3;�2π=3
ffiffiffi
3

p Þ of the BZ. In the proximity of these points, the Hamil-
tonian takes the form HðkÞ ¼ vFk � σ, where k = q−K and vF = 3τ/2.
Straightforward calculations show that γðkx; kyÞ ¼ 2ð�ky; kxÞ=ðk2x þ k2yÞ,
which diverges in k = 0. However, the MCD is also affected by the sin2ðtEÞ
factor, which approximates to sin2ðtEÞ∼ 9∣k∣2t2=4 in the vicinity of the
cone. The MCD is thus given by

Cðk; tÞ ¼ 9t2
Z
BZ

∣Gw;k0
ðkÞ∣2ð�ky; kxÞ

dkx; dky
4π2

; ð19Þ

which goes to zero for q→K (and similarly for K0).

Oscillating terms for the QW protocol
In this section, we analyze the behavior of the oscillating contribu-
tions in the MCD for our QW protocol Û ¼ T̂Ŵ. As evident from
the results presented in the main text, for a fixed number of time
steps, the strongest deviations of the MCD from the quantum metric
appear around q = 0 and q = π. These are critical points for the energy
E(q). The integral to be evaluated is

Iq0 ðtÞ :¼
Z

dq
2π

gwðq� q0ÞγiðqÞ cosð2EtÞ

¼Re
Z

dq
2π

gwðq� q0ÞγiðqÞ expði2EtÞ:
ð20Þ

Fig. 3 | Experimental encoding of the model
parameters. The transverse coordinate X in the
plane of the metasurfaces is mapped into the reci-
procal lattice coordinate q, and the characteristic
distance Λ corresponds to one Brillouin Zone. A
narrow wavepacket in the reciprocal lattice thus
corresponds to a beam crossing the X plane with
waist parameter w0≪ Λ. The transverse coordinate
X0 in the focal plane of the Fourier-transforming
lens (L) ismapped in the lattice position x of theQW
via the relation X0 ¼ 2λfx=Λ. Note that x and q are
considered adimensional quantities.
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For large t, the last expression can be estimated via the stationary phase
approximation:

Re
Z

dq
2π

gwðq� q0ÞγiðqÞ expði2EtÞ

∼
ffiffiffiffiffiffiffi
1
2πt

r
Re

eiπ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∣E00ðπÞ∣

p γiðπÞgwðπ � q0Þei2tEðπÞ
"

þ e�iπ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∣E00ð0Þ∣

p γið0Þgwð�q0Þei2tEð0Þ
#
;

ð21Þ

where E″(q*)≔ d2E/dq2∣q=q*. If gw(q) is a narrow function centered in q = 0,
the contribution from Iq0 ðtÞ is not negligible for q0 ≈ π and q0 ≈ 0. Say q0 ≈ π
(the same analysis holds for q0 ≈ 0), then the oscillating contribution is
proportional to cosð2EðπÞt þ π=4Þ= ffiffi

t
p

. For our protocol,E(π) = π/4 (while
E(0) = 3π/4), thus IπðtÞ / cosðπt=2þ π=4Þ= ffiffi

t
p

. For successive t, with
t1 = 2n and t2 = 2n+ 1, with n an integer number, this function flips sign
and itsamplitudedecreases as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=ðt þ 1Þ

p
, which canbe approximatedwith

1 for large t. Thus, averaging the MCD over two successive steps, provided
that the first time step is an even number, dramatically reduces the oscil-
lating contributions. Itmust be noted that afinite width of thewavepacket is
necessary for this argument tohold. If thewavepacket is extremelynarrow in
the BZ, then C ≈ γiðq0Þð1� cosð2Eðq0ÞtÞÞ and a multi-step average is
generally necessary.

Details on the experimental setup
The laser source is the output of a Titanium-Sapphire (Ti:Sa) laser (central
wavelength 810 nm, pulse duration 150 fs, repetition rate 40MHz), spatially
cleaned through a single-mode fiber. The beam waist is w0≃ 2.5 mm to
simulate localized initial states, and w0≃ 0.32mm for wavepacket
dynamics.

The liquid-crystal metasurfaces implementing the unitary evolution
are fabricated with a photoalignment technique, based on orienting a dye
solution (PAAD-22), spin-coated on ITO glasses, with linearly polarized
light at 405 nm. The liquid crystal (6CHBT) is inserted in the sample via
capillarity and locally aligns with the dye. Electrical contacts applied on the
edges of the ITO surfaces allow tuning the optical retardation of the devices
to the desired value. An alternate voltage with a sinusoidal wave at 10 kHz is
used in the experiment.

Relationship between experimental and simulated
coordinate spaces
The walker lattice space is encoded in the transverse-wavevector space of
the light beam crossing the patterned waveplates. As illustrated in Fig. 3,
this means that the transverse position X (modulo Λ) in the plane of the
liquid-crystal metasurfaces corresponds to the quasi-momentum q, while
the far-field corresponds to the lattice space. Accordingly, a wavepacket
corresponds to a beam having waist w0 <Λ in the X plane. The value q0
can be controlled either by laterally shifting the wavepacket or, more
practically, by translating the metasurfaces along the X direction. The
proper conversion factors from the setup to the model parameters are
provided in Fig. 3.

Experimental results for localized input states
Wemeasure the QWdistributions for localized input states after t = 10 and
t = 11 time steps. The results are shown inFig. 4. The agreement between the
experimental observation and the theoretical prediction is quantified in

terms of the similarity, s ¼ ðPx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PexpðxÞPthðxÞ

q
Þ2, where Pexp and Pth are

the normalized experimental and theoretical probability distributions,
respectively.

Data availability
The data were available from the corresponding author upon reasonable
request.

Code availability
The code used for the data analysis is available from the corresponding
author upon reasonable request.
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