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Simple Summary: The preoperative definition of the Oncotype DX recurrence score would be critical
to identify breast cancer patients who could benefit from chemotherapy before surgery. In this work,
we built a machine learning model applied to DCE-MRI images of a publicly available dataset to
predict the Oncotype DX score in patients with breast cancer. As a result, the model achieved an
accuracy of 60% in the training set and 63% (AUC = 0.66) in the test set. Our findings support the
feasibility of radiomics and machine learning for the prediction of prognostic data in breast cancer,
encouraging further, preferably multicenter, investigations to further improve the performance of the
model and assess its generalizability.

Abstract: Aim: To non-invasively predict Oncotype DX recurrence scores (ODXRS) in patients
with ER+ HER2- invasive breast cancer (IBC) using dynamic contrast-enhanced (DCE) MRI-derived
radiomics features extracted from primary tumor lesions and a ML algorithm. Materials and Methods:
Pre-operative DCE-MRI of patients with IBC, no history of neoadjuvant therapy prior to MRI, and
for which the ODXRS was available, were retrospectively selected from a public dataset. ODXRS
was obtained on histological tumor samples and considered as positive if greater than 16 and 26 in
patients aged under and over 50 years, respectively. Tumor lesions were manually annotated by three
independent operators on DCE-MRI images through 3D ROIs positioning. Radiomic features were
therefore extracted and selected using multistep feature selection process. A logistic regression ML
classifier was then employed for the prediction of ODXRS. Results: 248 patients were included, of
which 87 with positive ODXRS. 166 (66%) patients were grouped in the training set, while 82 (33%)
in the test set. A total of 1288 features was extracted. Of these, 1244 were excluded as 771, 82 and
391 were excluded as not stable (n = 771), not variant (n = 82), and highly intercorrelated (n = 391),
respectively. After the use of recursive feature elimination with logistic regression estimator and
polynomial transformation, 92 features were finally selected. In the training set, the logistic regression
classifier obtained an overall mean accuracy of 60%. In the test set, the accuracy of the ML classifier
was 63%, with a sensitivity of 80%, specificity of 43%, and AUC of 66%. Conclusions: Radiomics and
ML applied to pre-operative DCE-MRI in patients with IBC showed promises for the non-invasive
prediction of ODXRS, aiding in selecting patients who will benefit from NAC.

Keywords: radiomics; oncotype DX; breast cancer; machine learning; neoadjuvant chemotherapy;
magnetic resonance; recurrence score

1. Introduction

It is currently estimated that 1.6 million breast cancer (BC) cases occur worldwide each
year, making it the most common solid neoplasm in women [1]. Substantial improvements
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in treatment over the past few decades have reduced overall breast cancer mortality, yet
it remains a major cause of death [2]. BC is a highly heterogeneous disease, categorized
into three groups based on different molecular profiles: luminal A/B (ER/PgR+, HER2-
or +), HER2+ (ER/PgR-, HER2+) and triple negative (or basal-like, ER/PgR/HER2-) [3].
Therapeutical approaches are currently tailored according to each molecular subtype,
including chemotherapy (either neoadjuvant or adjuvant) in HER2+ and TN subtypes.
In hormone positive cancers, it is still debated whether cytotoxic chemotherapy could
be beneficial [4]. Indeed, the risk of tumor recurrence has to first be assessed in such
cases to fully address the cost/benefits ratio. This prognostic evaluation is made through
multi-parameter, multi-analyte, and multi-gene tests, with Oncotype DX recurrence score
(RS) being the most frequently used in clinical practice. This assay analyses a panel of
21 genes in women presenting early stage ER+, HER2- breast cancer, in order to determine
a ‘Recurrence Score (RS)’ [5–9], (scored as 0–100), corresponding to the 10-year risk of
recurrence, and is used to stratify low (<18), intermediate (18–30), or high (≥31) risk groups,
predicting whether the patients may benefit from adjuvant chemotherapy or not [5–8]. As
proved as valuable for the improvement of BC patients’ care, Oncotype DX RS has been
increasingly used over the last years, and it is now included in all major international
treatment guidelines [10,11]. Major limitations of Oncotype DX RS are represented by
its high costs (maximum tariff €4487.02 [12]), which jeopardizes its widespread use, and
by the fact that it is currently performed on histological specimen after surgical excision,
so that patients can undergo chemotherapy only after surgical excision, in an adjuvant
setting. The possibility to obtain a pre-operative Oncotype DX RS would allow the timely
dentification of patients who could benefit from chemotherapy and, therefore, undergo it
before surgical excision, in a neoadjuvant setting with all its related benefits, such as the in-
vivo assessment of tumor response. In this light, recent advances in the field of diagnostic
imaging and informatics, with the possibility to extract quantitative data not detectable
by human eyes (radiomics) and build predictive models using artificial intelligence and
machine learning (ML) techniques, could represent a powerful tool for the non-invasive
prediction of Oncotype DX RS. Indeed, magnetic resonance imaging (MRI) is the modality
of choice for pre-operative local tumor staging in BC, providing both morphological and
functional data on tumor neoangiogenesis, expression of tumor aggressiveness [13]. A
correlation between magnetic resonance imaging (MRI) features and Oncotype DX RS
has been reported in literature, but investigations to explore the usefulness of radiomics
features and artificial intelligence tools are currently lacking. Indeed, available ML and
deep learning studies aimed to predict Oncotype DX RS using semantic features, but the
role of radiomics features for this task has never been explored so far [14,15]. We, therefore,
aimed to evaluate whether preoperative MRI-derived radiomics features employed by a
ML algorithm could be used to non-invasively predict Oncotype DX RS in patients with
ER+ and HER2- invasive BC.

2. Materials and Methods
2.1. Patient Population

A public dataset of breast MRI examinations was used, freely available at: https://wiki.
cancerimagingarchive.net/plugins/servlet/mobile?contentId=70226903#content/view/70
226903 accessed on 3 May 2022 [16]. The database includes 1150 consecutive breast cancer
patients who underwent pre-operative breast MRI examinations from the 1 January 2000 to
the 23 March 2014. Patients with no available Oncotype DX score were excluded. Oncotype
DX score was considered as positive if greater than 16 in <50-year-old patients and greater
than 26 in >50-year-old patients [17].

2.2. Imaging Data

Different scanners, from 1.5 to 3.0 T, were used for image acquisition, including: Avanto
(Siemens Healthineers, Erlangen, Germany), Optima MR450w (GE Healthcare, Chicago,
IL, USA), SIGNA EXCITE (GE Healthcare, USA), SIGNA HDx (GE Healthcare, USA),

https://wiki.cancerimagingarchive.net/plugins/servlet/mobile?contentId=70226903#content/view/70226903
https://wiki.cancerimagingarchive.net/plugins/servlet/mobile?contentId=70226903#content/view/70226903
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Signa HDxt (GE Healthcare, USA), Skyra (Siemens Healthineers, Erlangen, Germany), Trio
(Siemens Healthineers, Erlangen, Germany), TrioTim (Siemens Healthineers, Erlangen,
Germany). The following acquisition parameters were employed: TR from 3.54 to 6.74 ms,
TE from 2.41 to 2.46 ms, slice thickness from 1.1 to 2.2 mm. The mean FOV was 12.345 cm.
The following MRI sequences were available: a non-fat saturated T1-weighted sequence, a
fat-saturated gradient echo T1-weighted pre-contrast sequence, and four post-contrast T1-
weighted sequences acquired after the IV administration of contrast agent (a weight-based
protocol of 0.2 mL/kg was performed). In our cohort, three types of contrast agents were
used as it follows: gadobutrol (Gadavist, Bayer Healthcare, Berlin, Germany) in 2 (0.2%)
patients, gadopentetate dimeglumine (Magnevist, Bayer Healthcare, Berlin, Germany) in
560 (60.8%) patients, and gadobenate dimeglumine (Multihance, Bracco, Milan, Italy) in
263 (28.5%) patients. Information on the employed contrast agent was not available for
97 (10.5%) patients. The median acquisition time between a pair of post-contrast sequences
was 131 s.

2.3. Image Analysis

Handcrafted lesion segmentation was performed by a radiologist expert in breast imag-
ing on first post-contrast images, as previously recommended [18] using a dedicated, freely
available software (ITKSNAP, v3.8.0) [19] obtaining 3D regions of interest (ROIs) (Figure 1).
In detail, tumor lesions were segmented using a semi-automated method avoiding the in-
clusion of macroscopic necrosis/cysts/neighboring vessels. A lower threshold was applied
by the operator for the inclusion of the enhancing tumor tissue, exploiting its high contrast
with the background parenchyma on subtracted images. If necessary, segmentation was
manually adjusted to avoid the inclusion of surrounding non-tumor tissue.

Two senior radiology residents, with at least 2 years of experience in breast imaging,
independently performed tumor segmentation on a sub-set of 30 patients randomly selected
from the study cohort. This was done to assess features stability among segmentations
performed by different operators through intraclass correlation coefficient (ICC) [20].

2.4. Radiomics Analysis

A dedicated open-source Python-based software (PyRadiomics, v3.0.1) was employed
for image pre-processing and 3D radiomic feature extraction. Pixel resampling was per-
formed with spacing set to 1 × 1 × 1 mm, to ensure rotational invariance of textural
features [21,22]. Gray-level whole-image normalization was paired with scaling (=100) and
voxel array shift (=300) with a resulting range of 0–600. A fixed bin width (=14) approach
was used for grey level discretization. In regard to feature classes, 2D shape, first order,
gray level co-occurrence matrix (GLCM), gray level run length matrix, gray level size zone
matrix, gray level dependence, and neighboring gray tone difference matrix were extracted.
All available features were calculated, except for GLCM sum average, as this proved to be
redundant with other GLCM parameters. A two-way random effect, single rater, absolute
agreement ICC was performed to assess radiomics features stability among segmentations
performed by different operators [20,23]. Radiomics features with ICC ≥ 0.75 were consid-
ered stable and selected for the following steps. ICC analysis was conducted using the R
“irr” package. The MinMax scaler with a 0–1 range was fitted on the training data alone
and used to transform both training and test sets.

Thereafter, radiomics features were selected based on their variance between the two
classes (positive and negative Oncotype DX RS). Low variant features (≤0.01) were thus
excluded. Pairwise correlation matrix (Pearson’s r ≥ 0.8) was conducted to identify and
remove radiomics features with high collinearity. Successively, the optimal number of
radiomics features for the classification task was identified by a 10-fold cross-validated
recursive feature elimination (RFECV) with a logistic regression (LBFGS solver) estimator.
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Figure 1. Example of tumor segmentation performed on subtracted DCE-MRI images using a semi-
automated method. Unannotated (A) and annotated (B) DCE-MRI subtracted image showing an
invasive ductal carcinoma of the left breast.

Finally, a feature transformation was performed on the resulting feature set to generate
a new feature matrix consisting of raw feature values and their interactions (i.e., second
degree polynomial transformation set to produce interactions only) [24]. As done with
scaling, the polynomial transformer was exclusively fit on the training data and then used
to transform training and test sets. The pandas and scikit-learn Python packages were used
for data processing. For the classification task, a logistic regression ML classifier algorithm
was selected based on specific characteristics of the dataset (expected number of instances
available, use of polynomial transformation, tabular nature of the data) and used with a
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5-fold stratified cross-validation (scoring metric = balanced accuracy) during the random
search tuning process. The search space was defined as follows: penalty = l1, l2 or elasticnet,
solver: saga or LBFGS, l1 ratio = 0–1. This approach was chosen as expected to give a better
estimation of generalizability [25], with the algorithm being trained in 4 data folds, and
then tested in the remaining fold ensuring the class balance.

The Brier score and a calibration curve were calculated for the model on the test set, to
assess prediction and calibration loss of predicted probability and lesion class.

The ML analysis was performed using the scikit-learn Python package. Accuracy
metrics were computed with the same Python package and the caret R package [26].

3. Results
3.1. Patient Population

A total of 922 patients out of the 1150 were initially included in the dataset. Of these,
patients with no available Oncotype DX score were further excluded, leaving a final population
of 248 patients (mean age: 55.4; range 28.7–82.9) with 248 breast cancer lesions (Figure 2). Of
these, 162 (65.3%) were in menopausal status. In patients younger than 50 years, Oncotype
DX score was positive in 30 of 83 cases (36%). In patients older than 50 years, Oncotype DX
score was positive in 57 of 165 cases (35%). Overall, 87 out of 248 (35%) patients had a positive
Oncotype DX recurrence score. Of the 248 included patients, 166 (66%) were grouped in the
training set, while the remaining 82 (33%) were grouped as test set. Histological features of
included breast lesions are depicted in Table 1.
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Figure 2. Flowchart of patients’ selection. Original dataset provided by Saha et al., 2018 [16].

3.2. Feature Selection

A total of 1288 features were extracted. Of these, 517 were initially selected as stable at
ICC analysis (ICC > 0.75). Of these, 82 resulted as non-variant between the two classes and
392 were highly intercorrelated. As a result, 44 features were retained and further analyzed
by the RFECV with a LBFGS solver, which identified an optimal number of 13 features.

3.3. Machine Learning Analysis

In the polynomial logistic regression analysis, the data produced by the feature selec-
tion was transformed to a 92-feature set including raw data and radiomic feature interac-
tions. In the training set, the classifier obtained an overall mean balanced accuracy of 60%.
The best model configuration was characterized by an l2 penalty and LBFGS solver. In the
test set, the accuracy of the trained ML classifier was 63%, with a sensitivity of 80% (95% CI:
0.66–0.89), specificity of 43% (95% CI: 0.29–0.59), positive likelihood ratio of 1.4 (95% CI:
1.03–1.94), negative likelihood ratio of 0.46 (95% CI: 0.23–0.92), and an area under the
receiver operating characteristics curve (AUC) of 66% (Figures 3 and 4). Accuracy metrics
are summarized in Table 2.
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Table 1. Histological features of included breast lesions.

Negative
Oncotype Score

Positive
Oncotype Score Total

ER+ 161 (64.9%) 87 (35.1%) 248

PgR+ 149 (67.1%) 75 (32.9%) 222

HER2- 161 (64.9%) 87 (35.1%) 248

Tumor Grade 1 15 (55.5%) 12 (44.5%) 27

Tumor Grade 2 35 (68.6%) 16 (31.4%) 51

Tumor Grade 3 110 (65.5%) 58 (34.5%) 168

Histologic type

Lobular 26 (86.6%) 4 (13.4%) 30

Ductal 96 (57.5%) 71 (42.5%) 167

Mucinous 2 (66.6%) 1 (33.4%) 3

Not available 37 (77.1%) 11 (22.9%) 48

Table 2. Accuracy metrics of the ML classifier in the test set.

Class Precision Recall f1-Score Total Cases

Negative Oncotype DX score 0.80 0.63 0.71 57

Positive Oncotype DX score 0.43 0.64 0.52 25

4. Discussion

The aim of our study was to evaluate whether ML applied to DCE-MRI could be
used to predict Oncotype DX RS in patients with ER+ and HER2- invasive breast cancer.
According to our findings, the ML classifier obtained an accuracy of 0.63% for the prediction
of Oncotype DX score in the test set, showing a sensitivity of 80% and a ROCAUC of 0.66.
Such data suggest a possible role of AI applied to pre-treatment DCE-MRI datasets for
the non-invasive prediction of the risk of BC recurrence, with remarkable advantages in
patients’ management. Oncotype DX RS has been used over the last ten years to stratify the
need of a systemic treatment in BC patients, resulting in a decreased use of chemotherapy.
Furthermore, a recent analysis by Schaafsma et al. showed that patients who underwent
Oncotype DX RS tended to have a better survival compared to those who did not use the
test [11]. Remarkably, high-risk patients undergoing chemotherapy showed an improved
overall and BC-specific survival compared to patients with high-risk scores who did not
receive chemotherapy. The same occurred to low-risk patients who forwent chemother-
apy, showing a longer overall survival than patients with low-risk scores treated with
chemotherapy. At present, Oncotype DX RS is recommended in patients with early ER+
and HER2- BC who are candidates for surgical operation. The multigene essay is then
performed on histological specimen to identify the risk of recurrence. According to test’s
results, adjuvant chemotherapy is performed in high-risk patients. However, in such cases
the in vivo assessment of the response is no longer feasible. Therefore, the preoperative
stratification of recurrence risk could allow BC patients at high risk of tumor recurrence
to perform neoadjuvant chemotherapy, allowing the in vivo assessment of the response
and an easier, more conservative surgical approach. Previous attempts have been made
to non-invasively and pre-operatively predict Oncotype DX score through AI techniques
applied to diagnostic images. In 2017, Saha and colleagues retrospectively evaluated a
comprehensive set of imaging features derived from DCE-MRI of 261 BC patients to predict
the distant recurrence risk using Oncotype DX scores [14]. Two multivariate models were
developed to discriminate between high and intermediate/low scores as well as between
high/intermediate and low scores. As a result, the first model predicted high against
low-intermediate Oncotype DX scores with an AUC of 0.77 (95% CI: 0.56–0.98), while
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low against high/intermediate score was predicted with a lower AUC of 0.51 (95% CI:
0.41–0.61). More recently, Kim et al. evaluated whether MRI could be used to predict Onco-
type DX RS in patients with ER+ and HER2- invasive breast cancer using a multivariate
logistic regression analysis [15]. Semantic MRI features were used for this purpose, such as
BI-RADS descriptors and kinetics features. As a result, round shape and low proportion
of washout component were associated with low recurrence score, while heterogeneously
dense, or scattered fibroglandular breast tissue, non-spiculated margins, and low propor-
tion of persistent component, were associated with high recurrence score. Most of the
available studies have been conducted using semantic and/or quantitative kinetic MRI
features and a multivariate analysis [27]. So far, a ML analysis was carried out in 2020 by
Jacobs et al., who used a new ML informatic system integrating clinical variables with mul-
tiparametric radiomics in 83 breast cancer lesions for the prediction of Oncotype DX score
(low, intermediate, and high risk) [28]. An AUC of 0.89 was obtained in discriminating
low from intermediate and high-risk groups. Conversely, a convolutional neural network
was used by Ha et al. in 134 BC lesions, obtaining an overall accuracy of 84% in predicting
patents with low Oncotype Dx RS compared to patients with intermediate/high Oncotype
Dx RS [29]. Their results indicate the feasibility of utilizing the CNN algorithm to predict
Oncotype Dx RS.

To the best of our knowledge, our study is the first investigation exploring the com-
bination of radiomics features and machine learning for the prediction of a dichotomic
Oncotype DX score, stratified according to patients’ age, as recently recommended [17].
Despite the relatively low diagnostic accuracy (AUC = 0.66), our findings further support
the hypothesis that artificial intelligence techniques applied to diagnostic images may play
a possible role for the non-invasive prediction of Oncotype DX score. This approach would
allow clinicians to plan the treatment strategy more accurately, as it would indicate the need
for neoadjuvant chemotherapy in high-risk cases. Among the available imaging techniques,
MRI is the best candidate for this purpose, being the most suitable modality for local breast
cancer staging and treatment response assessment after neoadjuvant chemotherapy [30,31].
Overall, this could result in a sensible gain in terms of time and costs, as Oncotype DX a
more expensive and less available technique.

Limitations of our study are represented by its retrospective design and a relatively
small sample size; furthermore, external testing is mandatory for the assessment of ML gen-
eralizability. Indeed, potential improvements of our model with a larger dataset, including
its external validation using population from different institutions, may result in a useful
predictive tool for determining patients’ likelihood of future breast cancer recurrences.

5. Conclusions

Based on our preliminary experience, a ML algorithm applied to DCE-MRI dataset
proved to be feasible for the pre-operative, non-invasive prediction of Oncotype DX RS
in BC. Our findings support the feasibility of radiomics and machine learning for the
prediction of prognostic data in breast cancer, encouraging further, large-scale investigations
to further improve the performance of the model and assess its generalizability.
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