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Article history: An inverse strategy is developed for identifying the parameters of the hysteretic phe-
Received 18 October 2019 nomenological constitutive model presented in Vaiana et al. (2019) and belonging to a
Received in revised form 17 December 2019 wider class of hysteretic models. The model, differently from the celebrated Bouc-Wen
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closed-form expressions that do not require any iterative algorithm for the complete char-
acterization of its response. The identification strategy is based on two optimization proce-
dures performed in sequence in which a mean-square residual between a target and a
computed response is minimized. The computation of suitable first trials is shown to rep-
resent an essential step of the procedure and is performed by taking advantage of the fact
that its parameters correspond to physical quantities characterizing the experimental hys-
teretic loop. The procedure has been tested by identifying the mechanical parameters of
two theoretical and four experimental responses for which numerical results prove the
robustness and effectiveness of the proposed identification strategy.
© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Constitutive models describing hysteretic behaviors play a widespread and significant role in several engineering appli-
cations. In general, the response of materials exhibiting hysteresis depends on the past history of the external actions besides
their current value while it may be (for rate-dependent materials) or may not be (for rate-independent materials) influenced
by the first time derivative of the action [1].

Applications of hysteretic models concern a large variety of scientific fields, mainly magnetics [2] and mechanics [3].
Within the field of structural engineering, hysteresis is involved in several applications involving ductile [4,5] and fragile
materials [6], seismic devices [7-10], dampers [11,12] as well as for simulating the response of complex mechanical systems
[13,14].

An important aspect for several applications concerns the convenience of adopting hysteretic models defined by means of
a single function (instead of multi-linear ones) characterized by continuity conditions of the response and of its first deriva-
tive. This aspect has been highlighted for the case of random vibration applications [15,16] as well as for dynamic identifi-
cation [17,18] and dynamic analysis of nanocomposites [19].

For this reason, several constitutive models have been proposed over years, the most widespread one being that due to
Bouc [20] and later extended by Wen [16,21]. Its popularity depends on its capability of reproducing complex hysteretic
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shapes with a limited number of constitutive parameters. Being ruled by differential equations involving the response and its
first- or higher-order time derivative, the Bouc-Wen model belongs to the class of differential constitutive models which also
includes further formulations [22,23]. Subsequently, such a model has been extended by several authors in order to account
for a variety phenomena such as asymmetric [24] and degrading [15] hysteresis.

Although the main benefit of these differential formulations consists in their capability of reproducing a vast variety of
hysteretic shapes and behaviors, they usually require numerical algorithms to be solved since closed-form solutions are
available only for very peculiar cases [25]. Moreover, the presence of one or more differential equations to be solved strongly
influences the procedures for determining the value of the constitutive parameters consistent with experimental data
[26,27]. As an example, identification strategies of the Bouc-Wen parameters often involve complex procedures based on
Bayesian inference [28,29], stochastic algorithms [30-32], polynomial approaches [33,34], genetic strategies [35] and differ-
ential evolution [36]. As discussed in [31], the main drawbacks affecting these strategies consist in the fact that most of them
require to fix the value of some parameters to alleviate performance problems and, above all, that the pivotal estimation of
the first trial parameters, which should be performed accordingly with the physics of the problem, is not straightforward.

Hysteretic models alternative to differential formulations are based on algebraic [37,38] and trascendental equations
[39,40] although most of them were developed to describe a specific physical phenomenon so that their generalization, if
possible, frequently presents significant limitations.

Within the framework of rate-independent, non-degrading symmetric hysteresis, a new class of uniaxial constitutive
models has been recently proposed [41-43]. Such models are capable of modeling a broad variety of hysteretic behaviors
by means of smooth curves whose expression is determined analytically.

Compared to the models available in the literature, such a class provides curves quite similar to the Bouc-Wen model, at
least in terms of hysteresis shape and of softening-hardening phenomena. Its implementation turns out to be very conve-
nient since it does not require solution of any differential equation; hence, the models [41-43] are generally faster and com-
putationally less demanding than the Bouc-Wen-like models. Moreover, their constitutive parameters represent physical
properties that can be directly related to quantities deduced from experimental data.

Despite of the latter aspect, the identification of the constitutive parameters represents a key feature to the diffusion of
the class of models [41-43]. In fact, an estimation based only on mechanical considerations or fitting experimental curves,
although effective in determining the magnitude of the parameters, lacks a sufficient accuracy and does not provide a mea-
sure of the errors.

To overcome such an issue, this research presents a rational and systematic strategy for identifying the constitutive
parameters of the hysteretic model [43]. This has been chosen since it is the most advanced and versatile of those belonging
to the class proposed in [41].

The proposed strategy consists in two optimization procedures performed in sequence aiming to minimize a least-square
residual between the numerical response and an experimental curve. Least-square optimization has been successfully
employed in several identification problems with similar features and proved to be a robust easy-to-implement and effective
strategy. Nevertheless, since optimization is carried out by means of iterative algorithms, it is essential to determine proper
first trials of the identifying parameters in order to ensure convergence to the global minimum [44]. For this reason, the pro-
posed strategy is focused on a phenomenological determination of the first trials which takes advantage of the physical inter-
pretation of the identified constitutive model.

Compared to analogous strategies performed for the parameter identification of differential models, the proposed strat-
egy does not require any limitation of the parameters’ values nor assumes any approximation. On the contrary, the proposed
strategy proved to be robust and does not require any particular expertise as it will be shown by the numerical applications.

The paper is organised as follows: Section 2 provides a summary of the class of hysteretic models presented in [41] while
Section 2.1 summarizes the detailed formulation of the Algebraic Model presented in [42] which is currently the most
advanced one of the class and has been implemented in OpenSees, an open source framework oriented for finite element
analysis [45].

Such a model has been adopted by the identification procedure hereby proposed and formulated in Section 3 while Sec-
tion 3.4 introduces some general rules which can be adopted for extending the presented procedure to any model belonging
to the class.

Finally, numerical analyses to investigate the robustness of the proposed procedure and to show its effectiveness are
reported in Section 4 while conclusions are discussed in Section 5.

2. A review of the hysteretic material class

The general formulation of the class of hysteretic materials presented in [41] and extended in [42] establishes a relation-
ship between a generalized force f and a generalized displacement u. It consists in a combination of four types of curves,
specifically, two (upper and lower) limiting curves, denoted as ¢, and ¢;, and two transition curves, c* and ¢~ relevant to pos-
itive and negative values of the velocity u, respectively, see, e.g., Fig. 1(a).

The limiting curves c, and c, intercept the vertical axis at +f. The generic transition curve ¢~ has a starting point [, f(uh)]
on ¢; and asymptotically tends to c,; in particular, the distance between ¢ and ¢, becomes smaller than a fixed tolerance § at
the displacement u; = u;" + 2u,. Analogously, the negative transition curve ¢~ begins on ¢, and asymptotically tends to ¢

Please cite this article as: S. Sessa, N. Vaiana, M. Paradiso et al., An inverse identification strategy for the mechanical parameters of a phe-
nomenological hysteretic constitutive model, Mechanical Systems and Signal Processing, https://doi.org/10.1016/j.ymssp.2020.106622
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loop teresis loop

Fig. 1. Geometrical specifications of the hysteretic material class.

Each constitutive model belonging to the hysteretic class is defined by means of the generalized tangent stiffness
expressed as function of the current displacement u and the relevant asymptotic displacement u;” or u;, depending on

the algebraic sign of 1, as:
ke (u, uj) = ke(U) + kg (u, uf) fori >0
k: (u, qu> = ke(u) + ky (u, uf) forit < 0 (1)

]

in which functions k. and kj, though arbitrary, need to be integrable with respect to u.

The essential point of the hysteretic class consists in the fact that, given an arbitrary point (up, f}), it is possible to uni-
vocally identify two transition curves c* and ¢~ so that they intersect at point P, as shown in Fig. 1(b). Consequently, the
values of uf and u; are also known. Thus, provided that k; is integrable, the generalized force relevant to a displacement
u turns out to be:

fw) =fp+ [y ke(v)dv+ [ kh<v, u;)dv fori >0

2
f(u):fp+ffpke(v)dv+fli‘?kh(v7 u;)dv forit<0 ?

We emphasize that the latter equations have been reported in an alternative form with respect to the original ones pre-
sented in [41] since they are more suitable for the description of the identification procedure.

Provided that the integrals of the functions k. and kj, can be evaluated in closed form, the constitutive model can be
exhaustively defined by an algebraic function and the generalized force can be computed in closed form avoiding numerical
procedures.

Furthermore, to facilitate the implementation of the class of hysteretic models [41] in finite element frameworks, it is
useful to introduce a symbolism consistent with the common practice in finite element analysis; thus, we shall denote by
u. and f, respectively, the generalized displacement and force at the last converged state, and by u, is the trial value of
the generalized displacement. Moreover, the algebraic sign of the generalized velocities are defined as:

s = sign(uic)
S¢ = sign(u;)

3)

Furthermore, k. and k; depend upon a set of material parameters specific to each instance of the class formulated in [41].
Hence, in order to formulate the identification procedure regardless of the adopted constitutive model, it is useful to group
the constitutive parameters into two vectors X, and x;. Therefore, Eqs. (1) and (2) can be expressed as:

ke (ue, ue, Se, Xe, X)) = Ke (U, Xe) + kn(Ue, e, St, Xp) 4)

f(uf,uc,sf,xe,x,,)=fc+/ [kg(u,xe)du+/ kn(u, ue, se, Xp) du (5)

2.1. The algebraic hysteretic material

The Algebraic Model presented in [42] is based on a set of five parameters, namely X, = [kq, kp, ] defining k, and
X. = [B1, B,] relevant to k.. In particular, k, is proportional to the initial stiffness of curves c* and ¢~ k; is the tangent stiffness
of the limiting curves at u = 0 and o is a parameter which rules the passage between the transition and the limiting curves.
Parameters f3; and f, influence the shape of the limiting curves.
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The model uses two auxiliary parameters defined as:
k= k\ L] s ka—ky [(142u0) " — 1
”“i[( 5 )_1’f_ 2

1-o
where é denotes a geometric tolerance. Specifically, the response is computed by two transition curves c* and ¢~ which tend
asymptotically to the limiting curves ¢, and c,. The discontinuity point between each transition curve and the corresponding
limiting one corresponds to a gap which is not greater than §.
The current value u; of the asymptotic displacement is:

(6)

1

se(1— o) - (14 2up)™\™*
Uj = Ue +Se(1 +2up) — 5 (mfc — pru — poutg — kytie — sif + (ka — kb)sr(li—oot) (7)
and the trial force is given by:
1S — Set +2up) ™" (14 2u) % — 1 =
(e, e Koo X0) = By? B + Kyt 1 (K, — Ky (L5 St +200) (1 o+ 2u0) rsf ®)
Se(1 — o) 1-o
Note that the tangent stiffness turns out to be:
d _
ke (U, U, St Xe, Xp) = d_L]l: = 3By u? + 5p5uf + kp + Se(ka — ky) (1 + Seue — Seu; + 2up) 9)
so that, recalling Eq. (4), k. and k;, turn out to be:
ke(ue, Xe) = 3pyuf + 5p,uf (10)

ki (U, Uc, S, Xp) = Ky + Se(ka — kp) (1 + Sette — Settj + 2up)

3. Parameter identification procedure

To fix the ideas, let us consider an experimental response expressed by means of a load-displacement or stress-strain
curve consisting in one or more hysteretic cycles as the one reported in Fig. 2(a).

Before starting the identification procedure, it is often necessary to delete the tips of the curve corresponding to the local
maxima and minima of the displacement. In fact, curves to be identified are often determined by quasi-static experimental
tests in which the response is affected by inertial contributions of the testing device. As a result, curves present smooth tran-
sitions of the response at those regions, corresponding to the tips of the hysteretic cycles, where the sign of the velocity is
inverted.

Moreover, it is convenient to isolate each branch of the hysteretic cycles so that the identification can be performed sep-
arately for each one of them. Actually, the identification procedure presented in this section is based on a least-square min-
imization and is very sensitive to slight differences between the responses of different loops. Hence, even small differences
between experimental cycles can affect the value of the identified parameters so that they could be not particularly repre-
sentative of the physics of the experiment. In fact, the theoretical identified response will be a sort of average between the
different cycles. Therefore, a global optimum, although capable of determining a good average of the response, can lack in
reproducing appropriate stiffness trends, such as hardening and softening, since response derivatives are not taken into
account by the procedure.

Considering that experimental data are usually provided in discrete form at fixed displacements u;,i = 1...n, where n is
the number of the discretization steps, we collect the experimental values f,(u;) relevant to a single branch of the hysteresis
loop within the vector f..

The identification procedure consists in a least-square optimization in which parameters are identified by minimizing the
residual between the experimental response and the computed curve. Although least-squares optimization is not the sole
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(a) Load-displacement response (displacements in (b) Branches of the experimental curve
m, forces in N)

Fig. 2. Sample of an experimental response relevant to a quasi-static uniaxial test of a wire rope isolator.
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strategy useful for the parameter identification, it has been chosen mainly for its robustness in model parameter estimation
[46]; moreover, it has been successfully used by the first Author to address even more complex problems [47,48].
To formulate the optimization problem, the residual @ (x., x;) is defined as a vector whose i-th entry is defined by

Fui i 1, St Xe, Xn) — fe(Ui)
(1)
nfe(u;)
so that the norm of @(x,, X;) represents the squared-mean-square of the gap between the experimental data and the com-

putational response associated with parameters X, and X,.
The parameter identification is performed by solving the following optimization problem:

O(uj, Xe, Xp) =

)):e} = argmin[||©(Xe, Xp)|| [Xe, Xn] "

h

where X, and X;, are the identified values of x, and x;, and the operator |-|| denotes the norm of a vector and argmin|f(x)|x]
denotes the argument x which minimizes the objective function f(x).

In spite of its formal simplicity, the optimization problem of Eq. (12) must be carefully assessed. In fact, it is usually solved
by adopting numerical algorithms such as the Interior Point algorithm [49] which has been adopted in this research.

For the case of strongly nonlinear residuals, the accuracy of the identified parameters depends on the starting point which
is adopted for the minimization procedure since such algorithms can converge to local minima of the residual norm. For this
reason, it is essential to estimate appropriate starting values for X, and x; in order to get confident about the identified
parameters.

In general, an appropriate trial of x;, is far more easier to be estimated with respect to that of x., at least for what concerns
the order of magnitude. In fact, parameters of x; are strongly related to physical quantities, such as forces and stiffness at
given points, directly determined by the hysteretic branches.

3.1. Preliminary optimization

If we assume that the first trial of x., denoted by x?, is set equal to zero (i.e., §; = 0 and $, = 0), the constitutive model
defines an hysteretic branch consisting of straight lines connected by smooth curves, as reported in Fig. 3(a). In such a case,
parameter k, is the stiffness at the initial point of the loading curve while k; is the stiffness of the upper and lower limiting

lines. For this reason, it is possible to estimate the first trials kg, kg and «° by conveniently analyzing the target curve.

In particular, the first trial of k, can be directly evaluated by numerically computing the derivative of the experimental
curve at its beginning point. Concerning kj, it is useful to recall from [42] that the role of k. (i, X.) consists in determining devi-
ations of the hysteretic curve from the straight lines determined by k. Moreover, Eq. (10) states that k. (0, X.) = 0; thus, a good
estimate of k, can be computed as the slope of the line tangent to the experimental curve at the origin, as shown in Fig. 3(b).

A first trial o of the parameter o can be computed, assuming i, to be unknown, by inverting Eq. (6). In this respect, we
remind that u, represents half of the displacement for which the distance between the transition and the limiting curve
becomes smaller than the tolerance g, as shown in Fig. 1(a). Hence, a good estimate for uy, can be obtained by setting
2up = A in which A is the amplitude of the experimental branch, as shown in Fig. 3(b).

Note that the latter assumption is not necessarily accurate; it is conventional and in general overestimates the real value
of «. Nevertheless, its purpose is simply to estimate the magnitude of such a parameter in order to perform an optimization
problem.

Finally, adopting the first trials kg and kg as stiffnesses and inverting Eq. 64, the first trial of o is:

, log [(kg - kg) /(5]

o = 13
log (1+A) (13)

1 o s .

/ k/, A /
,,,,,,, L
: L ky
u u
(a) Physical interpretation of kg, kp and ug (b) First trial values of kg, kp and A

Fig. 3. Estimation of the first trial values of the parameters determining kj(u).
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The optimization procedure is then performed by an iterative algorithm and provides a first set of estimates
X! = (,B}, B;>and X} = (I}C‘,, kl, &‘) of the whole set of parameters:

vl
K]] = argmin(|©(xe. Xy) | Xe. Xi] (14)
h

3.2. Refined optimization

In general, the preliminary optimization fails to determine the constitutive parameters with sufficient accuracy. In par-
ticular, the first trial of the optimization algorithm is esteemed as function of the stiffness at the loop edges and of the loop
amplitude.

Estimation of the first trials of kg, k, and o performed in SubSection 3.1 is easy and straightforward as long as ; = 8, = 0;
conversely, evaluating a whole set of first estimates of the parameters is complex and unreliable.

The actual values for the parameters f; and f, can be significantly differ from zero, i.e. the initial trial values assumed for
them. This can compromise the convergence of the algorithm to the global minimum.

For this reason, it is necessary to perform a further optimization after the estimation of more accurate first trials denoted
as X0 = (B9, B9). In particular, the two scalar parameters p? and pJ can be estimated by solving a system of two scalar equa-
tions. These can be obtained by imposing that the theoretical stiffness at given points is equal to the experimental stiffness of
the hysteresis loop. Namely, denoting by u,, the displacement relevant to an arbitrary point belonging to the hysteresis loop,
it is possible to determine the experimental value ke, (u) of the stiffness by finite differences. Then, we impose that the the-
oretical stiffness is equal to the experimental value:

ke (U, X2) + ki (tg, Uc, Se, Xp) = Kexp (L) (15)

in which stiffness kj, is computed by assuming the parameters X} = (k}, IQ},, &‘) computed by the preliminary optimization

and X? is the unknown variable.

Since X0 has two components, it is necessary to choose two points u; and u, at which the values ke, (u1) and ke (1) are
computed. In this respect, it is important that u; and u, are relevant to points of the hysteresis loop for which the sensitivity
of k. with respect to g; and B, is significant.

To this end we remark that the sensitivity of k., with respect to the points with zero displacement is negligible, in fact,
recalling Eq. (10),

ke(0, %) =0 VX, (16)

Furthermore, as shown in [42], the role of the parameters X, essentially consists in: i) introducing local maxima and ii)
introducing hardening at the tip of the loop.

For this reason, the first significant point, whose displacement is denoted as u, is assumed to be located at the end of the
loop. Moreover, if the experimental curve presents a local maximum at u,, as shown in Fig. 4(a), it is convenient to adopt it as
the second significant point since it represents a strong physical property of the hysteresis loop that can be conveniently
used as constraint.

Should the curve be monotonic, u, can be set as a half of the maximum displacement of the loop, as shown in Fig. 4(b).
This because it is not close to the origin, so that sensitivity of k. should be not negligible, and is far enough from the loop
edge, so that both significant points do not influence each other.

/(\/ k(1)

k(1 )=0

(a) Hysteresis with local maximum/minimum (b) Hysteresis with no local maximum/minimum

Fig. 4. Significant points adopted for the estimation of the first trials of the parameters ; and ,.
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Finally, the relevant stiffness values ke, (1) and ke, (112) are determined by applying finite differences to the experimental

curve.

It is worth being emphasized that computation of X2 = (%, p3) aims to determine a first trial to be used into an iterative
algorithm; thus, it is possible to introduce some approximations while computing X9. In this sense, we can assume that both

significant points u; and u, are located on the limit curve. Therefore, recalling Eq. (9), the stiffness turns out to be:
ke (U, Ue, St, Xe, Xp) = 3P1u% + 56Ut + Kk
since:

lim Ky, + (Ko — ky) (1 + Selte — Settj + 2ug) ~ = ky

Up—00

as shown in [43].

We can also assume that k, = I}},, i.e. the value obtained by the preliminary optimization. Thus, it is possible to determine

the first trials of g; and 8, by solving the linear system:

-_ -1 N
ﬁ?] _ [Buf SLﬂ [kexp(u]) —k},]
L5 3u; 5uj Kexp (Uz) — K}
and perform a further optimization analysis by an iterative algorithm defined as:
_x:
%

] = argmin(||@(X., Xp)|/|Xe, Xz]

. PSRN 0 0 7 I . . _—
having X} = [k!. k], &'] and X0 = [BY, B" as initial values. The identified constitutive parameters are denoted by x* and Xr.

For the reader’s convenience, a summary of the proposed strategy is reported in the frame below.

3.3. Summary of the identification strategy

the tails if necessary;
2. Compute the first estimate xﬂ of parameters Xj:

. kg is the tangent stiffness at the beginning of the experimental branch;

. kg is the tangent stiffness at the zero-displacement point of the experimental branch;
e o is computed by Eq. (13):

. log[(kﬂ—kﬁ)/é]
T T log(T+A)

3. Perform the Preliminary Optimization problem of Eq. (14)
x! .
o | = areminl| @k x) 1%, %]
h
in order to get X! = (ﬁ} ﬁ%)and X} = (fg‘l, kl, &‘);

mental curve, with displacements u; and u, and stiffness Kex(U1) and ke (U2);
5. Solve the linear system of Egs. (19):

(3] 363 5uf] ™ [Keg(ur) — ki

Bg a 3u% 511‘21 kexp (uz) - kg,

in order to get X2 = (B9, B9);
6. Perform the Refined Optimization problem of Eq. (20)
_x;‘ ;

x| = arsmin{|@(Xe, X,)|l[Xe, X}
L% ]

starting from the trials X! = (k!, k!, &') and X% = (5%, %) in order to get the identified parameters x* and x*;
h a b e 1 2 e h

1. Fix a number of pairs u;, . (u;) on the (discretized) experimental response of a single branch of the hysteretic loop; cu

4. Determine the two significant points, represented either in Fig. 4(a) or 4(b), depending on the shape of the experi
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As a final remark, experimental hysteresis loops usually consist of more than a single cycle so that the identification pro-
cedure identifies the constitutive parameters relevant to each single branch separately. Thus, the average of the values com-
puted by analyzing each branch is assumed as the comprehensive set of parameters that were looked for.

The presented strategy has proved to be stable and capable of addressing experimental loops with different shapes.
Numerical applications to illustrate its capabilities are reported in Section 4.

The identification procedure has been specialized to the Algebraic Model [42] since it represents the most advanced
model belonging to the phenomenological class [41] but it can be easily generalized, as discussed in the next subsection,
by defining general rules to define firt trials of the two optimization procedures described above.

3.4. A possible generalization of the identification strategy

A common property of the mechanical models belonging to the phenomenological class presented in [41] consists in the
fact that loops associated with stiffness k; present linear behavior for both the limiting curves and the initial part of the tran-
sition curves. Such models differ by the specific formulation of the function ruling the transition phase between such linear
parts.

For this reason, the identification strategy can still be performed by adopting the stiffness at the initial point of the hys-
teresis branch and at a suitable point of the limiting curve.

Depending on the shape of the experimental loop, these can be computed at specific points or, whenever the experimen-
tal data are not smooth, by trend lines evaluated over limited intervals.

Further parameters influencing the transition phase can be computed by determining the displacement intervals A, for
which the limiting curve is reached, as represented in Fig. 5(a), as well as the force increment f; associated with the displace-
ment A; being the overall loop amplitude.

In general, it is necessary to adopt a number of experimental data equal to the number of required parameters. It is also
important that, depending on the mathematical formulation of the constitutive model, these data are linearly independent.

Concerning the determination of the first trials to be adopted for the second optimization procedure, see, e.g., Steps 4 and
5 of the algorithm, it is possible to choose a set of significant points on the experimental hysteresis. Convenient points are
represented by the extremal tip of the curve and points in which the curve presents local maxima and/or minima.

Fig. 5(b) shows a generic hysteretic branch in which some of the point of interest and their stiffnesses have been
highlighted.

Each point represents an algebraic condition expressed by:

ke (uz, Xe) + kn (Ui, Ue, St, X)) — Kexp(ti) = 0 (21)

and representing the i-th equation of a system in the unknown vector x,whose solution yields the trial estimate XJ. It is
worth being emphasized that, if the specific constitutive model is conveniently formulated, the system of Eqs. (21) can be
solved in closed form.

4. Numerical applications

In order to test the identification procedure proposed in Section 3 in conjunction with the Algebraic Model described in
Section 2.1, a set of theoretical and experimental responses has been used as target of the identification algorithm.

The first four identifications have been carried out on the theoretical responses provided by the Algebraic Model associ-
ated with the sets of parameters reported in Table 1. Such procedures aim to investigate the consistency of the proposed

A
,,,,,,,,,, < Keli)
/i kexp(uz)
Uy us u u
(a) Example of first trial values of the base curve (b) Example of Significant Points of a generic hys-

teretic branch

Fig. 5. Estimation of the first trial values of the parameters determining kj,(u).
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Table 1
Constitutive parameters of the Algebraic Model adopted for the identification of the theoretical response.

Test kq kp o B B2

AM1 100 10 20 -4 -15

AM2 120 5 30 -15 15

AM3 100 10 20 0 0

AM4 120 5 30 2 2

algorithm with the mechanical formulation of the constitutive model. In particular, the algorithm is expected to provide
exactly the initial parameters adopted for the generation of the theoretical responses as well as null residuals.

Figs. 6(d) show the theoretical hysteresis loops of the Algebraic Model computed by assuming the values of Table 1. The
reported curves represent the load-displacement target curve (represented in blue), the responses corresponding to the
identified parameters, respectively, by the first and the second optimization procedure relevant to Steps 3 (green curve)
and 6 (red curve) of the strategy summarized in Section 3.

As a matter of fact, the procedure exactly identifies the values of the assumed parameters and the residual turns out to be
zero for both models.

In particular, the preliminary optimization procedure, representing Step 3 of the algorithm in Section 3.3, is sufficiently
accurate to determine the parameters with no approximations. However, this phenomenon, which is not common in pres-
ence of experimental data, is due to the fact that the target curve is an artificial response computed by the very same con-
stitutive model adopted for the identification procedure.

To investigate the capabilities of the proposed strategy in case of real applications, four experimental hysteresis loops
have been adopted as target responses. The first one, shown in Fig. 8(a), is the mechanical response of a bolted Steel Rein-
forced Elastomeric Bearing (SREB) subject to dynamic actions tested by Tsai et al. [50]. It is a high-displacements rubber
bearing having square cross section with dimensions 106 x 106 mm, 65 mm height and with thickness of the rubber layers
of 41 mm.

A further experimental loop, shown in Fig. 8(b), is relevant to a Fiber Reinforced Rubber Bearer (FREB) tested by Kelly and
Takhirov [51]; the bearer has circular cross section with diameter of 305 mm, height of 140 mm and thickness of rubber lay-
ers of 102 mm.

8
6
4
29 2
20 2
o o
51 =
< Q
-2 =2
4 = Ex perimental =4 [ x perimental
6 ~Prel. ident. 6 =Prel. ident.
—Ref. ident. —Ref. ident.
-8 48
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Displacement/Strain Displacement/Strain
(a) Material AM1 (b) Material AM2
15 15
10 10
5 5
v w
8 [
B p=3
2] 172]
= 0 3 0
g g
= 3
-5 -5
m [ x perimental [ x perimental
-10 —Prel. ident. -10 ——Prel. ident.
—Ref. ident. —Ref. ident.
15 15
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Displacement/Strain Displacement/Strain
(c) Material AM3 (d) Material AM4

Fig. 6. Theoretical responses of the Algebraic Models with parameters of Table 1 and identified curves.
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Upper Se

Discarded
region

/ P u

Fig. 7. Sample of a typical splitting of two consecutive branches of an hysteretic loop with deletion of the final tip region: J. depends on the particular
hysteresis loop and ranges between 10 2 and 2- 10 * in the assumed experiments.

6
i 6
4
0.5
— =2
Z z
2 0 20
x| =,
-0.5
—— Experimental 4 —— Experimental
-Ir Prel. ident. % Prel. ident.
—Ref ident. | —Ref. ident.
15 -8
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 006 008 -0.15 0.1 -0.05 0 0.05 0.1 0.15
Displacement [m] Displacement [m]
(a) SREB test (b) FREB test

Fig. 8. Target responses of the SREB and FREB experimental tests (blue curves) and identified curves with parameters of Tables 2 and 3.

5000 6000

4000

2000 |

0r

Load [N]
Load [N]

-2000 |

-4000 + —— Prel. ident.

—Ref. ident.

-5000 -6000
0. -0,

01 -0.005 0 0.005 0.01 .01 -0.005 0 0.005 0.01
Displacement [m] Displacement [m]

(a) PW16010L test (b) PW16010T test

Fig. 9. Target responses of the experimental tests (blue curves) and identified curves with parameters of Tables 2 and 3.

Two further loops, included in Fig. 9, correspond to the longitudinal and transverse experimental response of a wire-rope
isolator type PWHS 16010 tested by Vaiana et al. [52]. The device has 267 mm length, 100 mm height, 110 mm width and 16
mm rope diameter. The device has been tested by applying loads along its longitudinal direction (test PW16010L) and along
its transverse direction (test PW16010T).

The previous experimental responses have been selected to provide a comprehensive set of curves exhibiting different
features that make more significant the numerical testing of the proposed procedure.

All experimental tests consisted in imposing a sinusoidal displacement, with specific amplitude and frequency, under the
effect of an axial load; the recorded response is the horizontal reaction component along the displacement direction. We
refer to the original papers for further details about the experimental protocols, which are omitted for brevity, since their
load-displacement response is sufficient to perform the parameter identification. Tables reporting the values of the load-
displacement response of such experimental tests can be downloaded at [53].

Each experimental response has been adopted as the target of the proposed identification strategy. In particular, hystere-
sis loops have been split into monotonic branches whose initial and final tips have been discarded in order to avoid inertial
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effects of the testing machines. Fig. 7 reports a detail of a typical hysteresis loop in which the region affected by inertial phe-
nomena is shown in red. The upper and lower branches are split and analyzed separately while the red region is deleted. The
amplitude of the tip cuts, depending on each specific response, have been set equal to 0.0001 m for the SREB test, 0.001 m for
the FREB test and 0.0002 for the PW16010L and PW16010T tests.
First trials of the preliminary optimization have been computed according to Step 2 of the strategy summarized in Sec-
tion 3.1. For the reader’s convenience, such values have been reported in columns 2-4 of Tables B.4-B.7 of Appendix B.
The residual has been defined according to Eq. (11) and the preliminary optimization of Step 3 of the algorithm has been

performed by the Interior-Point algorithm [49,54,55], implemented in Matlab v. R2019a, with tolerance 10~® and adopting
the following bounds for the constitutive parameters within the optimization algorithm: k, > 0,k < kg, 00 # 1.

The results of such first optimization are reported in Tables B.8-B.11 of Appendix B.

Such identified values have been used to determine the first trials of the refined optimization according to Steps 4 and 5 of
the algorithm summarized in Section 3.3. The computed values are reported in columns 5-9 of Tables B.4-B.7 of Appendix B.

The refined optimization (Step 6) has been performed by adopting the residual of Eq. (11) and by using a Interior Point
algorithm [49] implemented in Matlab with tolerance 10'2. Bounds analogous to the ones adopted by the preliminary opti-
mization were enforced by nonlinear transformations of the parameters.

Results of the refined optimization are reported in Tables B.12-B.15 of Appendix B.

Such a procedure has been repeated for each branch of the considered hysteresis loops. Obviously, for each one of them, a
peculiar set of parameters has been identified. Thus, the identified values of the constitutive parameters relevant to each
experimental test have been computed as averages of the values corresponding to each hysteresis branch.

The values of the constitutive parameters identified by the preliminary optimization of Step 3 of the algorithm are
reported in Table 2 while Table 3 reports the parameters identified by the refined optimization corresponding to Step 6.

Figs. 8 and 9 report the load-displacement curves relevant to each identified test. In particular, the blue curves correspond
to the experimental response; the green ones correspond to the response of the Algebraic Model defined by the parameters
identified by the preliminary optimization (Table 2) while the red curves represent the response of the Algebraic Model com-
puted by adopting the parameters identified by the refined optimization (Table 3).

The responses relevant to the parameters identified by the refined optimization show a very good matching with respect
to the experimental ones, as confirmed by the values of the residuals at convergence, reported in the last column of Table 3. It
is worth being emphasized that, although the identified curves tend to follow the experimental response, they catch signif-
icant features of the target loops such as hardening at the branch edges, stiffness trend and inflection points.

On the contrary, curves corresponding to the parameters identified by the preliminary optimization present very signif-
icant discrepancies with respect tot he experimental ones, as confirmed by the values of the residual at convergence reported
in the last column of Table 2. As a matter of fact, the values of 8, and , identified by the preliminary identification (Table 2)
present a magnitude which is significantly smaller than the one of the corresponding values identified by the refined opti-
mization (Table 3). This difference is due to the fact that the preliminary identification assumes zero initial trials for g, and g,
and such value is significantly far from the solution. For this reason, the sensitivity of the residual with respect to such
parameters is negligible and the optimization converges to a local minimum.

This aspect confirms the needing to perform two separate optimization procedures (i.e., Steps 3 and 6) in order to cor-
rectly identify the constitutive parameters.

It is worth being emphasized that, for specific values of the parameter «, Eq. (6) provides complex values for ug and f as
well as for the material response. Nevertheless, such an issue is generally avoided by the optimization procedure since a non-

Table 2

Averages of the identified constitutive parameters relevant to the experimental hysteresis loops. Preliminary optimization.
Test kq [N/m] ky, [N/m] o By [N/m’] f, [N/m?) Residual norm
SREB 1.1-10° 9.5.10* 371.59 29.88 0.075-1078 22.1072
FREB 46-10° 3.9.10° 174.60 —506.64 1.48 6.8-102
PW16010L 1.7-10° 27-10° 593.0 0.076 48.10°° 23.10°3
PW16010T 1.97.10° 2.8-10° 8329 0.81 0.001 6.7-103

Table 3

Averages of the identified constitutive parameters relevant to the experimental hysteresis loops. Refined optimization.
Test ka [N/m] ky, [N/m] o By [N/m?] B, [N/m?] Residual norm
SREB 1.2-10° 8.0-10* 504.44 85.10° 5.4.10° 46-1073
FREB 5.3.10° 3.7-10° 280.43 -2.4.107 9.8-10° 7.6-107
PW16010L 1.8-10° 2.6-10° 704.96 1.0-108 5.0-10" 82.107*
PW16010T 2.1-10° 25.10° 981.3 1.04-10° 1.07 - 10" 1.7-107
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negligible imaginary part of the residual increases the value of the objective function. For this reason, it is convenient to per-
form a numerical check after the optimization procedure in order to avoid such a drawback.
Concerning the analyzed cases, all the identified parameters provide non-complex values of the response.

5. Conclusions

An inverse strategy for the identification of constitutive parameters characterizing materials modeled by the phenomeno-
logical model [42] has been developed. It is based on two optimization algorithms performed in sequence aiming to mini-
mize a residual defined as the normalized mean-square error between a target experimental load-displacement curve and
the response of the theoretical model proposed in [42].

To ensure robustness of the minimization procedures, a strategy for determining suitable first trials has been introduced
in the algorithm. Specifically, trial parameters are computed by closed-form relationships analyzing physical properties of
the experimental data, such as stiffness in peculiar regions of the experimental loops.

The procedure has been developed for the Algebraic Model presented in [42], currently the most versatile and compre-
hensive material developed within the phenomenological class [41]; however, it can be easily extended to other constitutive
models belonging to the same family as detailed in the paper.

Effectiveness and efficiency of the proposed algorithm have been proved by a set of numerical applications. Specifically,
the strategy has been applied to two artificial responses proving its theoretical soundness. Moreover, four experimental
responses have been identified in order to investigate the performances of the proposed strategy for real case identifications.

The numerical results have proved the accuracy of the algorithm in determining constitutive parameters of the Algebraic
Model since the load-displacement curves computed by the identified parameters correspond to very small residual norms
and catch the main features, such as hardening at the loop edges, stiffness trend and inflection points, of all experimental
tests.

The algebraic material developed in [42] has been also implemented in OpenSees [45], an open-source framework for
finite-element analysis, in order to ensure replicability of the results and foster the dissemination of such a phenomenolog-
ical model.
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Appendix A. OpenSees implementation of the Exponential and Algebraic Hysteretic Models

The Algebraic Material presented in [42] and described in Section 2.1 has been implemented in OpenSees v. 3.0, an open
source, object-oriented framework for finite element analysis [45].

A beta version of such framework with the implemented material can be freely downloaded at the link [56] in which
some sample application files are also provided.

The model belongs to the subclass uniaxialMaterial and its command line is:

uniaxialMaterial HystereticPoly $matTag $ka $kb $a $b1 $b2 $tol

in which $matTag is the progressive tag of the uniaxial material object, $ka-$be ta2 are the values of parameters kg, ky, o, $;
and B, and $to1l is the value of the tolerance é.

The implemented object contains methods implemented to address sensitivity analysis and supports the standard recor-
ders to print strain, stress and stiffness (namely, strain, stress, stressStrain and tangent).
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Appendix B. Report of the numerical applications

The present appendix reports in detail the numerical parameters and the outcomes of the identification procedures pre-
sented in Section 4. In particular, Tables B.4-B.7 report the initial trials and the outcomes of the preliminary optimization of
the four considered experimental materials while Tables B.8-B.15 summarize the initial trials and the outcomes of the
refined optimizations. Each one of these tables refers to a single branch of the considered hysteresis loops.

Table B.4
First trial values of the preliminary and refined optimizations. Test SREB. Tip cut 6. = 10~ m.
Branch K2 [N/m] K IN/m] 0 k0 [N/m] k9 [N/m) 0 BY [N/m?) B3 IN/m?]
1 1.1e+06 8.0e+04 2.781e+02 1.1e+06 9.9e+04 3.864e+02 —3.51e+06 4.61e+09
2 9.7e+05 8.6e+04 2.776e+02 9.7e+05 9.8e+04 2.641e+02 —4.35e+06 5.08e+09
3 1.3e+06 8.7e+04 2.804e+02 1.3e+06 1.0e+05 4.859e+02 —1.78e+06 4.52e+09
4 1.1e+06 8.4e+04 2.781e+02 1.1e+06 8.4e+04 3.499e+02 2.39e+06 3.61e+09
Table B.5
First trial values of the preliminary and refined optimizations. Test FREB. Tip cut 6, = 107> m.
Branch K2 IN/m] K IN/m] o0 K0 [N/m] K9 [N/m] 0 BY [N/m?) B3 IN/m?]
1 1.4e+06 3.9e+05 1.315e+02 1.4e+06 3.9e+05 5.685e+01 —1.34e+07 3.75e+08
1.1e+07 5.3e+05 1.394e+02 1.1e+07 5.3e+05 3.772e+02 —2.61e+07 6.98e+08
3 1.4e+06 4.2e+05 1.297e+02 1.4e+06 2.5e+05 8.977e+01 —1.11e+07 3.48e+08
Table B.6
First trial values of the preliminary and refined optimizations. Test PW16010L. Tip cut 6. = 2-10 * m.
Branch K2 N/m] k2 [N/m] o0 k9 [N/m] K9 [N/m] a0 B IN/m’] B3 IN/m®]
1 1.8e+06 2.7e+05 1.750e+03 1.8e+06 2.6e+05 4.691e+02 4.22e+08 —3.54e+12
2 1.5e+06 3.1e+05 1.738e+03 1.5e+06 3.1e+05 7.068e+02 1.52e+08 4.28e+12
3 1.8e+06 2.2e+05 1.758e+03 1.8e+06 2.4e+05 4.222e+02 9.12e+07 3.11e+12
4 1.6e+06 3.3e+05 1.753e+03 1.6e+06 3.3e+05 7.195e+02 —8.55e+08 1.16e+13
5 1.8e+06 2.5e+05 1.759e+03 1.8e+06 2.4e+05 4.303e+02 2.46e+08 1.49e+12
6 1.6e+06 3.5e+05 1.743e+03 1.6e+06 3.5e+05 8.992e+02 2.44e+08 2.19e+12
7 1.8e+06 2.4e+05 1.750e+03 1.8e+06 2.4e+05 4.749e+02 3.10e+08 4.69e+11
8 1.6e+06 3.0e+05 1.745e+03 1.6e+06 3.1e+05 6.843e+02 —4.63e+08 1.02e+13
9 1.9e+06 2.3e+05 1.769e+03 1.9e+06 2.3e+05 5.306e+02 5.13e+08 1.19e+12
Table B.7
First trial values of the preliminary and refined optimizations. Test PW16010T. Tip cut 6. =2 -10~* m.
Branch Ko [N/m] kS [N/m] o0 K2 [N/m] k9 [N/m] a0 B [N/m?] B9 [N/m®]
1 1.8e+06 2.5e+05 1.752e+03 1.8e+06 3.0e+05 8.065e+02 2.63e+09 —1.24e+13
2 2.0e+06 2.1e+05 1.769e+03 2.0e+06 2.7e+05 5.192e+02 9.09e+08 1.27e+12
3 1.9e+06 2.9e+05 1.765e+03 1.9e+06 2.9e+05 1.093e+03 1.85e+09 —3.30e+12
4 2.2e+06 2.4e+05 1.767e+03 2.2e+06 2.6e+05 5.964e+02 1.77e+09 —7.27e+12
5 1.8e+06 2.8e+05 1.739e+03 1.8e+06 2.8e+05 1.078e+03 3.40e+09 —1.74e+13
6 2.1e+06 3.3e+05 1.753e+03 2.1e+06 3.3e+05 6.673e+02 6.25e+08 9.01e+11
7 1.9e+06 2.6e+05 1.768e+03 1.9e+06 2.6e+05 9.791e+02 2.26e+09 —2.12e+12
8 2.2e+06 2.6e+05 1.781e+03 2.2e+06 2.9e+05 6.714e+02 9.99e+08 —2.24e+11
9 1.9e+06 2.7e+05 1.760e+03 1.9e+06 2.7e+05 1.085e+03 2.95e+09 —1.20e+13
Table B.8
Identified constitutive parameters relevant to test SREB. Preliminary optimization.
Branch kq [N/m] ky [N/m] o 1 [N/m’] B [N/m?] Residual norm
1 1.1e+06 9.9e+04 3.864e+02 4.69e+01 1.39e-01 2.2e-02
2 9.7e+05 9.8e+04 2.641e+02 3.19e+01 1.02e-01 1.8e—-02
3 1.3e+06 1.0e+05 4.859e+02 4.06e+01 5.84e—02 2.2e-02
4 1.1e+06 8.4e+04 3.499e+02 5.20e—05 7.10e—08 2.4e-02
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Branch kq [N/m] ky [N/m] o 1 [N/m’] B2 [N/m?] Residual norm
1 1.4e+06 3.9e+05 5.685e+01 —5.33e-05 —2.67e-07 6.0e—02
1.1e+07 5.3e+05 3.772e+02 1.59e-05 2.96e—09 1.2e-01
3 1.4e+06 2.5e+05 8.977e+01 —1.52e+03 4.45e+00 2.6e—02
Table B.10
Identified constitutive parameters relevant to test PW16010L. Preliminary optimization.
Branch ka [N/m] ky [N/m] a Br [N/m’] B [N/m®] Residual norm
1 1.8e+06 2.6e+05 4.691e+02 —2.64e-01 —8.42e-12 5.5e—-04
2 1.5e+06 3.1e+05 7.068e+02 —7.83e-05 0.00e+00 2.7e-03
3 1.8e+06 2.4e+05 4.222e+02 7.68e—01 4.59e—04 1.7e-03
4 1.6e+06 3.3e+05 7.195e+02 —2.95e-05 0.00e+00 1.3e-03
5 1.8e+06 2.4e+05 4.303e+02 —3.77e-01 —2.84e-05 1.2e-03
6 1.6e+06 3.5e+05 8.992e+02 —6.61e—05 6.86e—14 4.2e-03
7 1.8e+06 2.4e+05 4.749e+02 —7.54e—-04 0.00e+00 1.6e—03
8 1.6e+06 3.1e+05 6.843e+02 5.56e—01 7.29e—-06 2.7e-03
9 1.9e+06 2.3e+05 5.306e+02 —7.54e-04 0.00e+00 4.3e-03
Table B.11
Identified constitutive parameters relevant to test PW16010T. Preliminary optimization.
Branch ke [N/m| ky [N/m] o 1 [N/m?] B, [N/m?] Residual norm
1 1.8e+06 3.0e+05 8.065e+02 2.05e+00 1.81e-04 6.4e—03
2 2.0e+06 2.7e+05 5.192e+02 2.53e+00 1.17e-02 4.0e-03
3 1.9e+06 2.9e+05 1.093e+03 —4.72e-05 0.00e+00 7.6e—03
4 2.2e+06 2.6e+05 5.964e+02 1.22e+00 0.00e+00 5.0e—03
5 1.8e+06 2.8e+05 1.078e+03 —1.66e—05 0.00e+00 8.0e—03
6 2.1e+06 3.3e+05 6.673e+02 —4.04e—-04 0.00e+00 7.9e-03
7 1.9e+06 2.6e+05 9.791e+02 ~1.27e-04 0.00e+00 8.7e-03
8 2.2e+06 2.9e+05 6.714e+02 1.46e+00 3.35e-14 3.9e-03
9 1.9e+06 2.7e+05 1.085e+03 —2.36e—05 1.43e-13 9.2e-03
Table B.12
Identified constitutive parameters relevant to test SREB. Refined optimization.
Branch kq [N/m] ky [N/m] o B1 [N/m3] By [N/m3) Residual norm
1 1.5e+06 7.9e+04 6.907e+02 2.60e+06 5.28e+09 4.8e-03
2 1.4e+06 8.3e+04 4.883e+02 —2.94e+06 6.28e+09 5.2e-03
3 1.0e+06 7.8e+04 4.896e+02 4.73e+06 4.50e+09 3.7e-03
4 1.0e+06 8.2e+04 3.492e+02 —9.72e+05 5.57e+09 4.8e-03
Table B.13
Identified constitutive parameters relevant to test FREB. Refined optimization.
Branch kq [N/m] ky [N/m] o B1 [N/m3] By [N/m3) Residual norm
1 8.4e+06 3.7e+05 4.693e+02 —2.70e+07 1.15e+09 9.1e-03
6.0e+06 3.8e+05 3.004e+02 —2.32e+07 9.02e+08 7.1e-03
3 1.6e+06 3.6e+05 7.160e+01 —2.31e+07 8.90e+08 6.5e—03
Table B.14
Identified constitutive parameters relevant to test PW16010L. Refined optimization.
Branch kq [N/m] kp [N/m] o By [N/m?] By [N/m3] Residual norm
1 1.9e+06 2.6e+05 4.989e+02 2.90e+08 —2.60e+12 4.4e-04
2 1.8e+06 3.1e+05 8.733e+02 —2.28e+08 1.08e+13 1.0e—03
3 1.4e+06 1.9e+05 3.186e+02 1.53e+08 5.39e+12 7.5e—04
4 1.5e+06 3.3e+05 6.517e+02 —8.16e+08 1.19e+13 4.2e-04
5 1.5e+06 2.1e+05 3.561e+02 —1.51e+08 8.36e+12 3.2e-04
6 2.8e+06 3.4e+05 1.871e+03 —3.17e+08 8.58e+12 2.5e-03
7 1.8e+06 2.2e+05 4.789e+02 9.17e+08 —3.34e+12 3.6e—-04
8 1.8e+06 3.0e+05 8.537e+02 2.75e+08 6.15e+12 1.2e-03
9 1.7e+06 2.2e+05 4.429e+02 8.00e+08 —4.34e+11 2.8e—04
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Table B.15
Identified constitutive parameters relevant to test PW16010T. Refined optimization.

Branch ka [N/m] ky [N/m] o B1 [N/m’] B2 [N/m?] Residual norm

1 2.0e+06 2.5e+05 1.062e+03 1.55e+09 8.74e+12 1.9e-03

2 2.1e+06 2.0e+05 6.178e+02 3.18e+09 —1.81e+13 4.9e-04

3 1.8e+06 2.8e+05 1.075e+03 5.24e+08 1.81e+13 2.2e-03

4 2.2e+06 2.1e+05 6.949e+02 1.80e+09 1.32e+12 1.9e-03

5 2.6e+06 2.8e+05 1.639e+03 1.54e+08 2.36e+13 2.5e-03

6 2.3e+06 3.1e+05 8.810e+02 —1.31e+09 3.23e+13 3.0e—03

7 1.8e+06 2.6e+05 9.314e+02 8.24e+08 1.81e+13 1.4e-03

8 2.2e+06 2.5e+05 7.445e+02 1.58e+09 —3.89e+10 1.0e-03

9 2.1e+06 2.7e+05 1.186e+03 1.06e+09 1.19e+13 1.3e-03

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in the online version, athttps://doi.org/10.1016/j.ymssp.
2020.106622.
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