
 
 

 

 
Drones 2021, 5, 81. https://doi.org/10.3390/drones5030081 www.mdpi.com/journal/drones 

Perspective 

Recent Advancements and Perspectives in UAS-Based Image 
Velocimetry 
Silvano Fortunato Dal Sasso 1,*, Alonso Pizarro 2 and Salvatore Manfreda 3 

1 Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage 
(DICEM), University of Basilicata, 75100 Matera, Italy 

2 Escuela de Ingeniería en Obras Civiles, Universidad Diego Portales, Santiago 8370109, Chile; 
alonso.pizarro@mail.udp.cl 

3 Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II,  
80125 Naples, Italy; salvatore.manfreda@unina.it 

* Correspondence: silvano.dalsasso@unibas.it 

Abstract: Videos acquired from Unmanned Aerial Systems (UAS) allow for monitoring river sys-
tems at high spatial and temporal resolutions providing unprecedented datasets for hydrological 
and hydraulic applications. The cost-effectiveness of these measurement methods stimulated the 
diffusion of image-based frameworks and approaches at scientific and operational levels. Moreo-
ver, their application in different environmental contexts gives us the opportunity to explore their 
reliability, potentialities and limitations, and future perspectives and developments. This paper 
analyses the recent progress on this topic, with a special focus on the main challenges to foster fu-
ture research studies. 
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1. River Monitoring from UAS 
In the eighties of the XX century, image velocimetry techniques started to emerge 

from laboratory and industrial applications and later on were also adapted for fluvial 
monitoring [1]. Optical methods for river flow monitoring are nowadays popular among 
researchers and are starting to be considered at operational levels due to the following 
reasons: traditional contact measurements require expert operators and, therefore, they 
are time-consuming and rather expensive. 

The increasing popularity of optical measurements for river monitoring is moti-
vated by the growing availability of low-cost technology and the introduction of dedi-
cated smartphones apps [2,3]. Moreover, the growing number of applications based on 
Unmanned Aerial Systems (UAS) further favoured the development of such techniques, 
making accessible any location of a river system [4–6].  

The effort to develop image-based techniques is evidenced by the increasing num-
ber of research studies published in the last years. The evolution of research activities has 
been depicted in Figure 1, which provides the trend of publications on river monitoring 
adopting different techniques over the last 40 years. The graph has been obtained using 
the Scopus database, adopting the following keywords: “river” and “velocity” with 
“image velocimetry” or “current meter” or “radar”. This allows for observing how the 
use of different techniques has changed over time. It is possible to observe that image 
velocimetry techniques were applied to river monitoring for the first time in 1997 and 
have grown steadily over time, reaching 43% of the publications on river monitoring. It is 
also worth mentioning that radar use has increased over time, making surface velocity 
measurements the most relevant topic, representing about 75% of the total number of 
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publications in river monitoring.  

 
Figure 1. Number of papers extracted from the Scopus database published between 1980 and 2020 
using the keywords: “river” and “velocity” with “image velocimetry” or “current meter” or “ra-
dar”. Date of access to the Scopus dataset: 21/07/2021. 

The increasing interest in image-based techniques is also testified by the common 
intent to make available datasets and codes. For instance, Perks et al. [7] collected 13 field 
experiences (five UAS-based) conducted in six different countries, providing all survey 
data, including pre-processed frames and benchmark measurements. The recent work of 
Bandini et al. [8], which collects 27 UAS-based case studies in Denmark, promotes the use 
of UAS for river monitoring. These studies represent a great opportunity to test and 
validate methodologies or highlight the main sources of errors in outdoor settings.  

Surface velocity observations can be used to derive river discharge estimations by 
combining depth-integrated water velocity profiles and cross-sectional areas. On the one 
hand, the mean flow velocity along each profile can be derived by exploiting the linear 
relationship with the maximum and surface flow velocity [9,10]. On the other hand, 3D 
river cross-section reconstructions can be performed by Structure from Motion (SfM) 
algorithms [11]. Moreover, this data can also be exploited to measure water level eleva-
tion using Machine Learning Algorithms (ML) used for automatic segmentation of water 
surfaces [12]. However, difficult lighting conditions or water conditions (e.g., vegetation, 
turbidity) can severely affect automatic water line detection. Alternative methods use 
drone-based eco-sounder [13], onboard radar altimetry [8] and LIDAR (Light Detection 
And Ranging) systems [14] for the same purposes in extended morphological river con-
ditions (e.g., turbid waters, obstructed river view). Figure 2 provides an overview of the 
operational flexibility of UAS platforms for river discharge estimations (Q) by combining 
cross-sectional areas (A) and water level (D) observations, as well as surface velocity (Vs) 
and mean velocity (Vm) observations. 

The use of UAS for optical flow measurements in unfavourable flow conditions 
highlights the possibility to monitor floods, ungauged or inaccessible areas [15]. Moreo-
ver, the possibility to capture videos from different flight heights and with nadir or 
oblique camera angles allows one to observe large and dynamic rivers [16], as well as 
identify the water surface patterns from different points of view [17]. The payload flexi-
bility—for instance, many choices ranging from RGB to TIR sensors—allows to cover and 
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regulate different spectral ranges based on specific fields and flow conditions [18]. UAS 
remote-controlled systems allow the real-time definition of acquisition frequency based 
on water flow velocities [19]. The possibility of using filters, polarisers, and changing the 
flight height based on imposed resolution allows for adapting footage acquisition based 
on environmental settings (e.g., sunlight, reflections, shadows) to maximise the caption 
of different patterns in time [20]. Despite the commonly recognised UAS strengths, UAS 
are subject to several limitations. The most important ones are related to 1) the UAS 
maximum payload that limits the possibility to adopt multiple sensors and communica-
tion hardware; 2) the restriction imposed by national flight regulations that limit the use 
of UAS, especially in urban areas; 3) the need of continuous power supply for frequent 
flight missions and the impossibility for flight under extreme meteorological conditions. 
Moreover, the main limitations regarding the use of UAS for image velocimetry concern 
other technical limitations such as the wind speed and the local favourable light condi-
tions during the acquisition. 

 
Figure 2. Potential in the use of UAS for river monitoring combining river morphological and sur-
face velocity estimations. The combinations of different sensors (e.g., RGB or TIR camera, LiDAR, 
eco-sounder, etc.) may help to measure flow in different fields and flow conditions. 

2. Recent Research Progress on UAS-Based Image Velocimetry 
In the last decades, numerical and field-based studies have been carried out to 

evaluate image-based solutions for velocity measurements. These studies generally 
adopt deterministic [21,22] or statistical [23] approaches for studying the error sources in 
outdoor applications. The main objectives concern the definition of parameter settings 
(e.g., camera frame rate, the size of regular sub-regions for cross-correlation approaches) 
to obtain accurate surface flow velocity estimations.  

Different studies enhanced the influence of some sources of errors on image veloc-
imetry in outdoor applications strictly related to mobile platforms (e.g., UAS or handheld 
cameras). Detert [24], for instance, evidenced that the stabilisation issues and neglect-
ed—or poorly executed—camera calibration during field measurement could potentially 
induce significant errors on a frame-by-frame displacement calculation. According to 
these findings, Ljubičić et al. [25] explored different commercial and ad-hoc tools for 
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image stabilisation algorithms, highlighting the influence of stabilisation errors on image 
velocimetry performances and the beneficial effects of stabilisation algorithms for these 
purposes. For calibration and geo-rectification purposes, optical data features with 
known coordinates (Ground Control Points, GCPs) are usually taken into consideration. 
To overcome the need for GCPs, recent approaches use onboard radars or lasers to con-
vert image units (pixels) into metric units [8,18]. 

Another commonly recognised challenge is related to the influence of environmen-
tal noise on the velocity signal under challenging weather conditions, poor illumination, 
sunlight reflections, glare and shadows on the flow surface, river colour background, and 
riverine flora movements, among others [24,26]. Additionally, extremely scarce illumi-
nation or rapid illumination changes may introduce several problems in recovering long 
and reliable features trajectories [22,27].  

Field studies are frequently affected by the difficulties in acquiring reference surface 
velocity measurements. Generally, contact (e.g., current meters or ADCPs) and 
non-contact (e.g., radars) instruments are indifferently adopted for this purpose [7]. 
These instruments are usually affected by different approximations related to surface 
velocity estimations. For instance, current meters and ADCPs cannot measure the surface 
velocity, which is usually extrapolated assuming a velocity depth profile. For these rea-
sons, several authors are adopting computer vision techniques for reproducing natural 
environments and adopting an imposed reference velocity (Figure 3). Different synthetic 
image generators are commonly used in particle image/tracking velocimetry research 
studies to create realistic particle images within a reasonable computational time. Start-
ing from laboratory PIV generators, recent advancements consider more realistic con-
figurations such as real river background and homogeneous [19] and heterogeneous [28] 
distribution of particles, with colour and shape noises and surface velocity distribution 
along the transect [29]. 3D computer graphics and flow simulation tools have been re-
cently adopted to generate videos reproducing realistic river flow, including turbulence, 
sunlight effects, and camera settings [30,31]. 

 
Figure 3. Images taken from different sources ranging from laboratory laser application (a) to nu-
merical simulations (b–e) or computer vision (f). In particular, synthetic images are: (b) random 
synthetic image from open-source PIVlab software; (c) ideal configuration with homogenous par-
ticle distribution and different velocity profile along the cross-section [29]; (d) synthetic image with 
particles heterogeneously distributed and colour noise [28]; (e) synthetic image with river back-
ground [19]; (f) synthetic image reproducing river flow turbulence and sunlight effects [31]. 

Along with these issues, the lack of surface tracking features or homogeneously 
distributed materials across the cross-section represents the more recognised challenges 
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for outdoor applications. In natural conditions, flows can present low seeding densities 
or locally distributed tracer clusters. These conditions can introduce a high variance and 
underestimate the flow velocity field, especially near the riverbanks. In this regard, Dal 
Sasso et al. [21] and Pizarro et al. [28] introduced three metrics for quantification of spa-
tial and temporal characteristics of seeding during the video acquisition period. These 
metrics are based on the calculation of the (1) seeding density, (2) index of dispersion of 
tracers, and (3) coefficient of variation of tracer dimension demonstrating their statistical 
significance on image-based performances. Furthermore, Pizarro et al. [28,32] recently 
proposed the Seeding Distribution Index (SDI) as a dimensionless parameter that syn-
thesises the seeding conditions in the field, merging seeding and spatial distribution 
characteristics. This index was formulated using numerical experiments and tested in 
some field case studies for describing the heterogeneous spatial distribution of tracers 
and the tendency to form clusters. Remarkable is the strong positive correlation between 
SDI values and image-velocimetry errors (the lower SDI, the lower the errors), providing 
a useful tool for practical applications. Recently, Dal Sasso et al. [33] explored the possi-
bility of applying the SDI index at different spatial scales along the cross-section, dividing 
the region of interest into sub-sectors to better capture the variability of tracers in space 
and time. We showed a significant reduction of errors (between 20% to 39%) using the 
proposed SDI-based criterion with respect to the use of the total number of frames 
available (classical approach).  

From a practical point of view, most of the literature experiments have been artifi-
cially seeded to simplify the identification of moving patterns on the water surface [7]. 
However, the recurrence of artificial tracer deployments is not practical and safe because 
operators need to access the area. Thus, the current research is moving in the direction to 
maximise the information of the water movement, identifying flow structures such as 
ripples, differences of colour intensity due to suspended sediments or illumination, and 
turbulence structures. Several computer vision techniques that are fea-
tures-detector-based, such as Feature Tracking Velocimetry (FTV, [34]), Optical Tracking 
Velocimetry (OTV, [27]), Space-Time Image Velocimetry (STIV, [35]), Surface Structure 
Image Velocimetry (SSIV, Leitão et al. [2]), and Kanade–Lucas Tomasi Image Velocimetry 
(KLT-IV, [36]), have been implemented for this purpose. The efficiency of these new 
emerging methods is promising, considering the possibility of monitoring flows without 
visible objects. However, moving from the recent works of Koutalakis et al. [37] and 
Pearce et al. [22], more research efforts are needed to test algorithms in different envi-
ronmental conditions and to discriminate the main differences of approaches. In turn, the 
seeding limitation can be partially compensated using high-visibility tracers [38] or 
thermal sensors that are less affected by water surface reflections and illumination con-
ditions than RGB imagery [18]. Thermal sensors allow for monitoring in daylight and 
nighttime conditions [39], but their current spatial resolution, low contrast, and price 
present a limitation for monitoring larger rivers or when a high level of detail is required. 
For this reason, pre-processing techniques based on image enhancement are needed to 
increase image velocimetry performances and obtain realistic trajectories in rivers [22,27].  

Moreover, a considerable limitation affecting optical methods is the lack of infor-
mation on the velocity profile along the vertical to estimate river discharge. In this con-
text, it is a common practice to use a conversion factor between the surface and 
depth-averaged velocities (usually known as the alpha value). This factor is site-specific, 
depending on river hydraulic and geometric characteristics, and its calibration requires 
intense field campaigns in different flow conditions. Generally, it is influenced by the 
presence of vegetation on the riverbed or secondary currents affecting the shape of the 
velocity profile [9,10]. In this regard, new methods based only on UAS measurements of 
surface flow velocities and water surface slope for the parametrisation of this coefficient 
as a function of the Gauckler-Manning-Strickler coefficient have been explored by Ban-
dini et al. [8]. All these efforts should allow for the development of clear operational 
guidelines specific to each environmental condition [40]. 
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3. Final Remarks and Future Prospects 
UAS are fascinating platforms for fluvial monitoring that ensure 1) high spatial res-

olution, 2) high accuracy, 3) high flexibility, and 4) low costs. UAS observations are 
promising for their applicability on surface velocity estimations, morphology recon-
struction, and river discharge monitoring in a wide range of water and river morphology 
conditions. These hydrological variables are essential for sediment transport analysis, 
flow dynamics simulations, inundation process reconstruction, flood and droughts 
forecasting, and pollution dispersion monitoring. 

The scientific community is moving towards the direction to maximise the perfor-
mances of image-velocimetry techniques for river flow monitoring by assessing new 
features detection algorithms and frameworks, tracking methods, and defining guide-
lines for their correct application. Surface velocity data are essential for studying flow 
patterns, erosion dynamics, and instream habitats. 

A greater effort is necessary to identify a set of strategies for automatic discrimina-
tion between tracking features and water reflections and environmental noise in natural 
settings. In addition, research studies should focus on implementing an automatic 
workflow to enhance tracking features in particularly challenging conditions, such as 
intense sunlight and shadows, or to filter the influence of wind and river turbulence on 
surface velocity estimations. Recent advances in automatic features detection and ma-
chine learning algorithms (ML) can identify static and dynamic patterns based on their 
characteristics (e.g., shapes, colour, texture). Furthermore, exploring the spectral charac-
teristics of the water surface represents a matter of great interest to obtain a classification 
of floating material. 

New research advancements are needed to integrate surface flow velocity field and 
water depth data for flow discharge estimation. In this regard, a combined approach to 
detect and classify surface and background features is needed to obtain a smart river 
discharge estimation from cameras exportable in different river contexts. Moreover, new 
models and algorithms should be tested in the future to maximise the surface velocity 
information, reducing the variability of depth-averaged velocity estimates and limiting 
the dependence on river geometry and flow conditions.  

Technical advances and miniaturisation can greatly improve flight performances 
and multisensor applications overcoming the recognised UAS limitations, especially for 
river bathymetry and water depth estimations. These advancements combined with re-
al-time data transferring to a cloud system will allow faster data processing. Moreover, 
considerable work is needed on the goal of optical systems automation in natural envi-
ronments. An extended phase of learning should be necessary to identify the common 
river hydro-morphological characteristics and develop a modular framework able to 
describe all river flow processes using image-based methods. 
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