Frequency-dependent squeezing (FDS) represents a well established way to address quantum noise (QN) in Gravitational-Wave (GW) Earth-based detectors, such as LIGO, Virgo, and KAGRA. This technique is realized with the use of an external detuned optical resonator, the filter cavity. The experiment we present here is a table-top prototype that will probe a cheaper, more compact and more flexible strategy for broadband QN reduction (Ma et al., 2017). This scheme is based on two-mode Einstein–Podolsky–Rosen (EPR) entangled squeezed light, and it works without any filter cavity. The EPR-entangled beams will propagate in a small-scale suspended interferometer with high-finesse arm-cavities. This experiment aims at validating the EPR conditional squeezing at audio frequencies, suited for GW detection, implementing also innovative optical techniques.

Einstein–Podolsky–Rosen conditional squeezing for next generation Gravitational-Wave detectors / De Marco, F.; Di Pace, S.; Ahn, H.; Ali, W.; Bawaj, M.; Chiarini, G.; Garaventa, B.; Kim, C. H.; Kim, Y.; Kim, K.; Lee, S.; Naticchioni, L.; Park, J. G.; De Laurentis, M.; Sorrentino, F.; Pak, S.; Lee, S.; Sequino, V.. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - 1070:(2025). ( 16° Pisa Meeting on Advanced Detectors) [10.1016/j.nima.2024.170008].

Einstein–Podolsky–Rosen conditional squeezing for next generation Gravitational-Wave detectors

Chiarini, G.;Kim, Y.;De Laurentis, M.;Sequino, V.
2025

Abstract

Frequency-dependent squeezing (FDS) represents a well established way to address quantum noise (QN) in Gravitational-Wave (GW) Earth-based detectors, such as LIGO, Virgo, and KAGRA. This technique is realized with the use of an external detuned optical resonator, the filter cavity. The experiment we present here is a table-top prototype that will probe a cheaper, more compact and more flexible strategy for broadband QN reduction (Ma et al., 2017). This scheme is based on two-mode Einstein–Podolsky–Rosen (EPR) entangled squeezed light, and it works without any filter cavity. The EPR-entangled beams will propagate in a small-scale suspended interferometer with high-finesse arm-cavities. This experiment aims at validating the EPR conditional squeezing at audio frequencies, suited for GW detection, implementing also innovative optical techniques.
2025
Einstein–Podolsky–Rosen conditional squeezing for next generation Gravitational-Wave detectors / De Marco, F.; Di Pace, S.; Ahn, H.; Ali, W.; Bawaj, M.; Chiarini, G.; Garaventa, B.; Kim, C. H.; Kim, Y.; Kim, K.; Lee, S.; Naticchioni, L.; Park, J. G.; De Laurentis, M.; Sorrentino, F.; Pak, S.; Lee, S.; Sequino, V.. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - 1070:(2025). ( 16° Pisa Meeting on Advanced Detectors) [10.1016/j.nima.2024.170008].
File in questo prodotto:
File Dimensione Formato  
DeMarco&al.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 624.93 kB
Formato Adobe PDF
624.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1010358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact