Let be a closed Riemann surface of genus b. We give an account of some results obtained in the recent papers [6, 18, 19] and concerning what we call here pure braid quotients, namely, non-abelian finite groups appearing as quotients of the pure braid group on two strands. We also explain how these groups can be used in order to provide new constructions of double Kodaira fibrations.

Finite Quotients of Surface Braid Groups and Double Kodaira Fibrations / Polizzi, F.; Sabatino, P.. - (2023), pp. 339-361. [10.1007/978-3-031-11938-5_15]

Finite Quotients of Surface Braid Groups and Double Kodaira Fibrations

Polizzi F.
;
2023

Abstract

Let be a closed Riemann surface of genus b. We give an account of some results obtained in the recent papers [6, 18, 19] and concerning what we call here pure braid quotients, namely, non-abelian finite groups appearing as quotients of the pure braid group on two strands. We also explain how these groups can be used in order to provide new constructions of double Kodaira fibrations.
2023
9783031119378
9783031119385
Finite Quotients of Surface Braid Groups and Double Kodaira Fibrations / Polizzi, F.; Sabatino, P.. - (2023), pp. 339-361. [10.1007/978-3-031-11938-5_15]
File in questo prodotto:
File Dimensione Formato  
Finite Quotiens of surface braid groups and double Kodaira fibrations - Electronic Version (2023).pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 603.01 kB
Formato Adobe PDF
603.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1022055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact