We use an hybrid approach based on a genetic algorithm and on the gradient descent method in order to decompose an image. In the pre-processing phase the genetic algorithm is used for finding two suitable initial families of fuzzy sets that decompose R in accordance to the well known concept of Schein rank. These fuzzy sets are successively used in the descent gradient algorithm which determines the final fuzzy sets, useful for the reconstruction of the image. The experiments are executed on some images extracted from the the SIDBA standard image database.Abstract. We use an hybrid approach based on a genetic algorithm and on the gradient descent method in order to decompose an image. In the pre-processing phase the genetic algorithm is used for finding two suitable initial families of fuzzy sets that decompose R in accordance to the well known concept of Schein rank. These fuzzy sets are successively used in the descent gradient algorithm which determines the final fuzzy sets, useful for the reconstruction of the image. The experiments are executed on some images extracted from the the SIDBA standard image database.
A fuzzy hybrid method for image decomposition problem / Sessa, Salvatore; DI MARTINO, F.; Loia, V.. - STAMPA. - 4974:(2008), pp. 353-358. (Intervento presentato al convegno EVOWORKSHOPS 2008 tenutosi a Napoli nel 26-28 marzo 2008) [10.1007/978-3-540-78761-7].
A fuzzy hybrid method for image decomposition problem
SESSA, SALVATORE;F. DI MARTINO;
2008
Abstract
We use an hybrid approach based on a genetic algorithm and on the gradient descent method in order to decompose an image. In the pre-processing phase the genetic algorithm is used for finding two suitable initial families of fuzzy sets that decompose R in accordance to the well known concept of Schein rank. These fuzzy sets are successively used in the descent gradient algorithm which determines the final fuzzy sets, useful for the reconstruction of the image. The experiments are executed on some images extracted from the the SIDBA standard image database.Abstract. We use an hybrid approach based on a genetic algorithm and on the gradient descent method in order to decompose an image. In the pre-processing phase the genetic algorithm is used for finding two suitable initial families of fuzzy sets that decompose R in accordance to the well known concept of Schein rank. These fuzzy sets are successively used in the descent gradient algorithm which determines the final fuzzy sets, useful for the reconstruction of the image. The experiments are executed on some images extracted from the the SIDBA standard image database.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.