This paper provides a tree-based methodology to deal with three-way data sets. The aim is to partition cases on the basis of a set of attributes measured in various situations. A supervised approach is considered, thus the recursive partitioning criterion takes account of the internal homogeneity of the response variable. The proposed classification and regression tree-based methodology can be extended to multivariate response variables as well. In the following, the general framework is introduced and some special cases are briefly described. The results of an application on a real data set are summarized.

3Way Trees / Siciliano, Roberta; Tutore, VALERIO ANIELLO; Aria, Massimo. - STAMPA. - 1:(2007), pp. 231-234. (Intervento presentato al convegno Meeting of Classification and Data Analysis Group 2007 tenutosi a Macerata nel 12-14 settembre).

3Way Trees.

SICILIANO, ROBERTA;TUTORE, VALERIO ANIELLO;ARIA, MASSIMO
2007

Abstract

This paper provides a tree-based methodology to deal with three-way data sets. The aim is to partition cases on the basis of a set of attributes measured in various situations. A supervised approach is considered, thus the recursive partitioning criterion takes account of the internal homogeneity of the response variable. The proposed classification and regression tree-based methodology can be extended to multivariate response variables as well. In the following, the general framework is introduced and some special cases are briefly described. The results of an application on a real data set are summarized.
2007
9788860560209
3Way Trees / Siciliano, Roberta; Tutore, VALERIO ANIELLO; Aria, Massimo. - STAMPA. - 1:(2007), pp. 231-234. (Intervento presentato al convegno Meeting of Classification and Data Analysis Group 2007 tenutosi a Macerata nel 12-14 settembre).
File in questo prodotto:
File Dimensione Formato  
Paper ufficiale da sito springer.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 597.14 kB
Formato Adobe PDF
597.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/203738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact