We explore attribute dependencies in the datasets by using direct and inverse fuzzy transforms. Our algorithm optimizes the fuzzy partitions of the universe of the attributes and moreover establishes if the set of the data points is sufficiently dense with respect to the chosen partitions: two specific regression indexes measure the reliability of our model. The known “El Nino” dataset is the basis of our experiments, whose results are consistent with the regression analysis made with the same data.

Multi-dimensional fuzzy transforms for attribute dependencies / Di Martino, F.; Loia, V.; Sessa, Salvatore. - STAMPA. - (2009), pp. 53-57. (Intervento presentato al convegno IFSA-EUSFLAT 2009 tenutosi a lisbona nel 20-24 luglio 2009).

Multi-dimensional fuzzy transforms for attribute dependencies

F. Di Martino;SESSA, SALVATORE
2009

Abstract

We explore attribute dependencies in the datasets by using direct and inverse fuzzy transforms. Our algorithm optimizes the fuzzy partitions of the universe of the attributes and moreover establishes if the set of the data points is sufficiently dense with respect to the chosen partitions: two specific regression indexes measure the reliability of our model. The known “El Nino” dataset is the basis of our experiments, whose results are consistent with the regression analysis made with the same data.
2009
9789899507968
Multi-dimensional fuzzy transforms for attribute dependencies / Di Martino, F.; Loia, V.; Sessa, Salvatore. - STAMPA. - (2009), pp. 53-57. (Intervento presentato al convegno IFSA-EUSFLAT 2009 tenutosi a lisbona nel 20-24 luglio 2009).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/350038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 0
social impact