In this paper we propose a computationally effective approach to detect multiple structural breaks in the mean occurring at unknown dates. We propose a non-parametric approach that exploits, in the framework of least squares regression trees, the contiguity property of the Fisher grouping method (1958) proposed for grouping a single real variable. The proposed approach is applied to study the possibility of using the series of anomalous observation C17 provided by the seasonal adjustment procedure implemented in X12-ARIMA.

Detecting multiple mean mreaks at unknown pointswith atheoretical regression trees / Cappelli, Carmela; R. N., Penny; M., Reale. - ELETTRONICO. - (2005), pp. 975-978. (Intervento presentato al convegno International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand tenutosi a australia nel dicembre 2005).

Detecting multiple mean mreaks at unknown pointswith atheoretical regression trees

CAPPELLI, CARMELA;
2005

Abstract

In this paper we propose a computationally effective approach to detect multiple structural breaks in the mean occurring at unknown dates. We propose a non-parametric approach that exploits, in the framework of least squares regression trees, the contiguity property of the Fisher grouping method (1958) proposed for grouping a single real variable. The proposed approach is applied to study the possibility of using the series of anomalous observation C17 provided by the seasonal adjustment procedure implemented in X12-ARIMA.
2005
9780975840023
Detecting multiple mean mreaks at unknown pointswith atheoretical regression trees / Cappelli, Carmela; R. N., Penny; M., Reale. - ELETTRONICO. - (2005), pp. 975-978. (Intervento presentato al convegno International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand tenutosi a australia nel dicembre 2005).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/377341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact