The rotational properties of a light beam are controlled by its spin and orbital angular momentum (SAM and OAM). The q-plate, a liquid crystal device that can give rise to a coupling of these two quantities, was introduced a few years ago, leading to several applications in classical and quantum photonics. Very recently, in particular, a specific kind of q-plate was used to generate rotational-invariant states of single photons, which were then employed for performing a demonstration of quantum key distribution without the need for establishing a common reference frame between the transmitting and the receiving units. This result may find applications in future satellite-based quantum communication. By a similar approach, photonic states having a strongly enhanced rotational sensitivity, as opposed to rotational invariance, can be generated by using q-plates with very high topological charge. Photons in these states can be obtained starting from light having a uniform linear polarization and, after a physical rotation, can be converted back into light having uniformly linear polarization. As a result, one obtains linearly polarized light whose polarization plane rotates by an angle that is proportional to the angle of physical rotation between the generation and detection stages, with a very large proportionality constant. This effect of rotational amplification, which we named "photonic gear", leads to a sort of "super-resolved Malus' law", potentially useful for measuring mechanical angles with very high precision.

From q-plates to the photonic gear: tailoring the rotational properties of light / Marrucci, Lorenzo; Fabio, Sciarrino. - 8999:(2014), p. 89990H. [10.1117/12.2036723]

From q-plates to the photonic gear: tailoring the rotational properties of light

MARRUCCI, LORENZO;
2014

Abstract

The rotational properties of a light beam are controlled by its spin and orbital angular momentum (SAM and OAM). The q-plate, a liquid crystal device that can give rise to a coupling of these two quantities, was introduced a few years ago, leading to several applications in classical and quantum photonics. Very recently, in particular, a specific kind of q-plate was used to generate rotational-invariant states of single photons, which were then employed for performing a demonstration of quantum key distribution without the need for establishing a common reference frame between the transmitting and the receiving units. This result may find applications in future satellite-based quantum communication. By a similar approach, photonic states having a strongly enhanced rotational sensitivity, as opposed to rotational invariance, can be generated by using q-plates with very high topological charge. Photons in these states can be obtained starting from light having a uniform linear polarization and, after a physical rotation, can be converted back into light having uniformly linear polarization. As a result, one obtains linearly polarized light whose polarization plane rotates by an angle that is proportional to the angle of physical rotation between the generation and detection stages, with a very large proportionality constant. This effect of rotational amplification, which we named "photonic gear", leads to a sort of "super-resolved Malus' law", potentially useful for measuring mechanical angles with very high precision.
2014
From q-plates to the photonic gear: tailoring the rotational properties of light / Marrucci, Lorenzo; Fabio, Sciarrino. - 8999:(2014), p. 89990H. [10.1117/12.2036723]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/586917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact