Detecting and diagnosing failures of Unmanned Aerial Vehicles during their mission is a key challenge for their effective deployment. On-board diagnostic systems are able to provide a huge amount of information about the state of the vehicle during the flight, by monitoring sensors, software, and hardware components. However, the ability of processing such data in an online manner is a serious obstacle to a timely detection and diagnosis of failures. This paper proposes a method to progressively focus the data collection on signals providing the most reliable information about the system failure probability, so as to reduce considerably the number of false alarms and/or undetected failures, and to ease the online data processing. We set a simulation experiment showing that the proposed approach is able to select the most informative subset of signals in few iterations in an effective and efficient way.

Sampling UAV Most Informative Diagnostic Signals / Pietrantuono, Roberto; M., Ficco; Russo, Stefano; G., Gigante. - (2016), pp. 683-688. (Intervento presentato al convegno Workshop on Security and Privacy in Systems and Communication Networks (SecureSysComm 2015) tenutosi a KRAKOW, POLAND nel NOVEMBER 4-6, 2015) [10.1109/3PGCIC.2015.61].

Sampling UAV Most Informative Diagnostic Signals

PIETRANTUONO, ROBERTO;RUSSO, STEFANO;
2016

Abstract

Detecting and diagnosing failures of Unmanned Aerial Vehicles during their mission is a key challenge for their effective deployment. On-board diagnostic systems are able to provide a huge amount of information about the state of the vehicle during the flight, by monitoring sensors, software, and hardware components. However, the ability of processing such data in an online manner is a serious obstacle to a timely detection and diagnosis of failures. This paper proposes a method to progressively focus the data collection on signals providing the most reliable information about the system failure probability, so as to reduce considerably the number of false alarms and/or undetected failures, and to ease the online data processing. We set a simulation experiment showing that the proposed approach is able to select the most informative subset of signals in few iterations in an effective and efficient way.
2016
978-1-4673-9473-4
Sampling UAV Most Informative Diagnostic Signals / Pietrantuono, Roberto; M., Ficco; Russo, Stefano; G., Gigante. - (2016), pp. 683-688. (Intervento presentato al convegno Workshop on Security and Privacy in Systems and Communication Networks (SecureSysComm 2015) tenutosi a KRAKOW, POLAND nel NOVEMBER 4-6, 2015) [10.1109/3PGCIC.2015.61].
File in questo prodotto:
File Dimensione Formato  
3PGCIC from proceedings.pdf

solo utenti autorizzati

Descrizione: 3PGCIC 2015 - Workshop on Security and Privacy in Systems and Communication Networks (SecureSysComm 2015)
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/618213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact