Potentially oxidant chemical species, which include not only free radicals but also other oxidizing chemical species such as reactive oxygen species (ROS), for example, hydroxyl radical and hydrogen peroxide, and nitrogen reactive species (RNS), for example, nitric oxide, play a relevant role in all biological processes and especially in cell defenses and molecular signaling. Their action is finely modulated by the antioxidant network that is composed either by endogenous or exogenous compounds (e.g., enzymes, peptides, lipids, and vitamins). An impaired modulation of oxidant species can lead to the socalled oxidative stress that is now considered an emerging health risk factor in almost all living organisms including plants, animals, and humans. Indeed, oxidative stress is related to a reduced lifespan and many diseases (e.g., cardiovascular diseases, neurodegenerative disorders, and metabolic diseases) both in humans and in animals. Unfortunately, oxidative stress does not show any clinical picture, but it can be detected only by means of specific laboratory tests. The recent recognition of a specific “redox code” and the definition of a redoxomics as a new “omics” are now enlarging the horizon of the traditional oxidative stress field leading to the definition of the so-called electrophilic stress. The aim of this chapter is to review the basic principles of redox reaction starting from the concept of free radicals and antioxidant in order to define the “electrophilic stress” as an emerging health risk factor for early aging and almost 1000 illness from infectious diseases to cancer. A paragraph is dedicated to the tests to measure oxidative stress in clinical practice either in humans or in animals in order to prevent, to treat and to monitor electrophilic-related diseases.

Redoxomics and Oxidative Stress: From the Basic Research to the Clinical Practice / Tafuri, Simona; Cocchia, Natascia; Landolfi, Francesco; Iorio, Eugenio Luigi; Ciani, Francesca. - 8:(2016), pp. 149-169. [10.5772/64577]

Redoxomics and Oxidative Stress: From the Basic Research to the Clinical Practice

TAFURI, SIMONA;COCCHIA, NATASCIA;CIANI, FRANCESCA
2016

Abstract

Potentially oxidant chemical species, which include not only free radicals but also other oxidizing chemical species such as reactive oxygen species (ROS), for example, hydroxyl radical and hydrogen peroxide, and nitrogen reactive species (RNS), for example, nitric oxide, play a relevant role in all biological processes and especially in cell defenses and molecular signaling. Their action is finely modulated by the antioxidant network that is composed either by endogenous or exogenous compounds (e.g., enzymes, peptides, lipids, and vitamins). An impaired modulation of oxidant species can lead to the socalled oxidative stress that is now considered an emerging health risk factor in almost all living organisms including plants, animals, and humans. Indeed, oxidative stress is related to a reduced lifespan and many diseases (e.g., cardiovascular diseases, neurodegenerative disorders, and metabolic diseases) both in humans and in animals. Unfortunately, oxidative stress does not show any clinical picture, but it can be detected only by means of specific laboratory tests. The recent recognition of a specific “redox code” and the definition of a redoxomics as a new “omics” are now enlarging the horizon of the traditional oxidative stress field leading to the definition of the so-called electrophilic stress. The aim of this chapter is to review the basic principles of redox reaction starting from the concept of free radicals and antioxidant in order to define the “electrophilic stress” as an emerging health risk factor for early aging and almost 1000 illness from infectious diseases to cancer. A paragraph is dedicated to the tests to measure oxidative stress in clinical practice either in humans or in animals in order to prevent, to treat and to monitor electrophilic-related diseases.
2016
978-953-51-2746-8
Redoxomics and Oxidative Stress: From the Basic Research to the Clinical Practice / Tafuri, Simona; Cocchia, Natascia; Landolfi, Francesco; Iorio, Eugenio Luigi; Ciani, Francesca. - 8:(2016), pp. 149-169. [10.5772/64577]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/647578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 7
social impact