The nearest neighbor classifiers are popular supervised classifiers due to their ease of use and good performance. However, in spite of their success, they suffer from some defects such as high storage requirements, high computational complexity, and low noise tolerance. In order to address these drawbacks, prototype selection has been studied as a technique to reduce the size of training datasets without deprecating the classification accuracy. Due to the need of achieving a trade-off between accuracy and reduction, Multi-Objective Evolutionary Algorithms (MOEAs) are emerging as methods efficient in solving the prototype selection problem. The goal of this paper is to perform a systematic comparison among well-known MOEAs in order to study their effects in solving this problem. The comparison involves the study of MOEAs' performance in terms of the well-known measures such as hypervolume, Δ index and coverage of two sets. The empirical analysis of the experimental results is validated through a statistical multiple comparison procedure.

Comparison of Multi-objective Evolutionary Algorithms for prototype selection in nearest neighbor classification / Acampora, Giovanni; Tortora, Genoveffa; Vitiello, Autilia. - (2017), pp. 1-8. (Intervento presentato al convegno 2016 IEEE Symposium Series on Computational Intelligence (SSCI 2016)) [10.1109/SSCI.2016.7849936].

Comparison of Multi-objective Evolutionary Algorithms for prototype selection in nearest neighbor classification

Acampora Giovanni;Vitiello Autilia
2017

Abstract

The nearest neighbor classifiers are popular supervised classifiers due to their ease of use and good performance. However, in spite of their success, they suffer from some defects such as high storage requirements, high computational complexity, and low noise tolerance. In order to address these drawbacks, prototype selection has been studied as a technique to reduce the size of training datasets without deprecating the classification accuracy. Due to the need of achieving a trade-off between accuracy and reduction, Multi-Objective Evolutionary Algorithms (MOEAs) are emerging as methods efficient in solving the prototype selection problem. The goal of this paper is to perform a systematic comparison among well-known MOEAs in order to study their effects in solving this problem. The comparison involves the study of MOEAs' performance in terms of the well-known measures such as hypervolume, Δ index and coverage of two sets. The empirical analysis of the experimental results is validated through a statistical multiple comparison procedure.
2017
9781509042401
Comparison of Multi-objective Evolutionary Algorithms for prototype selection in nearest neighbor classification / Acampora, Giovanni; Tortora, Genoveffa; Vitiello, Autilia. - (2017), pp. 1-8. (Intervento presentato al convegno 2016 IEEE Symposium Series on Computational Intelligence (SSCI 2016)) [10.1109/SSCI.2016.7849936].
File in questo prodotto:
File Dimensione Formato  
Comparison of Multi-objective Evolutionary Algorithms for prototype selection in nearest neighbor classification.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 207.82 kB
Formato Adobe PDF
207.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/694106
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact