The aim of this work is the development of a methodology to predict lift characteristics for transport aircraft in the whole flight envelope, useful in the preliminary aircraft design stage. The purpose is an attempt to improve the classical methodologies for wing load distribution and lift prediction, considering the airfoils aerodynamic characteristics until stall and post stall conditions during the process, and modifying 2D characteristics in case of high lift devices to take into account 3D effects introduced by the devices themselves. The method is a modification of Nasa Blackwell procedure, capable to predict wing stall aerodynamic characteristics for both clean and flapped configuration. As far the high lift devices effect is concerned, the improved method works substituting clean airfoil aerodynamic characteristics with the flapped aerodynamics ones, and introducing a correction to evaluate the 3D effects induced by high lift devices geometrical discontinuities. The results of the developed method have been compared with CFD and experimental data showing good agreement, making available a fast and reliable method, useful in preliminary aircraft design.
An improved method for transport aircraft for high lift aerodynamic prediction / Della Vecchia, P; Nicolosi, F; Ruocco, M; Stingo, L; De Marco, A.. - Unico:(2017), pp. 1-12. (Intervento presentato al convegno 6th CEAS Air and Space Conference tenutosi a Bucharest (ROMANIA) nel 16-20 October, 2017).
An improved method for transport aircraft for high lift aerodynamic prediction
Della Vecchia P;Nicolosi F;Ruocco M;Stingo L;De Marco A.
2017
Abstract
The aim of this work is the development of a methodology to predict lift characteristics for transport aircraft in the whole flight envelope, useful in the preliminary aircraft design stage. The purpose is an attempt to improve the classical methodologies for wing load distribution and lift prediction, considering the airfoils aerodynamic characteristics until stall and post stall conditions during the process, and modifying 2D characteristics in case of high lift devices to take into account 3D effects introduced by the devices themselves. The method is a modification of Nasa Blackwell procedure, capable to predict wing stall aerodynamic characteristics for both clean and flapped configuration. As far the high lift devices effect is concerned, the improved method works substituting clean airfoil aerodynamic characteristics with the flapped aerodynamics ones, and introducing a correction to evaluate the 3D effects induced by high lift devices geometrical discontinuities. The results of the developed method have been compared with CFD and experimental data showing good agreement, making available a fast and reliable method, useful in preliminary aircraft design.File | Dimensione | Formato | |
---|---|---|---|
PaperCEAS2017_id254_Rev.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.