EUSO-Balloon is a pathfinder mission for JEM-EUSO (Extreme Universe Space Observatory on-board the Japanese Experiment Module), the near-UV telescope proposed to be installed on board the International Space Station (ISS) before the end of this decade. The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the entire detection chain. The JEM-EUSO instrument consists of an UV telescope designed to focus the signal of the UV tracks generated by Extreme Energy Cosmic Rays propagating in Earth's atmosphere, onto a finely pixelized UV camera. The EUSO-Balloon instrument, smaller than the one designed for the ISS, is currently developed as a payload of a stratospheric balloon operated by the French Centre National d'Études Spatiales (CNES) and will be launched during the CNES flight campaign in August 2014. This telescope will point towards the nadir from a float altitude of about 40 km. With its Fresnel Optics and Photo-Detector Module, EUSO-Balloon will monitor a 12°×12° wide field of view in a wavelength range between 290 and 430 nm, at a rate of 400'000 frames/sec. In this paper, we will review the main stages of the signal processing of the EUSO-Balloon instrument: the photodetection, the analog electronics, the trigger stages, which select events while rejecting random background, the electronic acquisition system which performs the data management and the monitoring, allowing the instrument control during operation. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

The EUSO-Balloon instrument / Scotti, V.; Osteria, G.. - 0:(2014).

The EUSO-Balloon instrument

Scotti, V.;
2014

Abstract

EUSO-Balloon is a pathfinder mission for JEM-EUSO (Extreme Universe Space Observatory on-board the Japanese Experiment Module), the near-UV telescope proposed to be installed on board the International Space Station (ISS) before the end of this decade. The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the entire detection chain. The JEM-EUSO instrument consists of an UV telescope designed to focus the signal of the UV tracks generated by Extreme Energy Cosmic Rays propagating in Earth's atmosphere, onto a finely pixelized UV camera. The EUSO-Balloon instrument, smaller than the one designed for the ISS, is currently developed as a payload of a stratospheric balloon operated by the French Centre National d'Études Spatiales (CNES) and will be launched during the CNES flight campaign in August 2014. This telescope will point towards the nadir from a float altitude of about 40 km. With its Fresnel Optics and Photo-Detector Module, EUSO-Balloon will monitor a 12°×12° wide field of view in a wavelength range between 290 and 430 nm, at a rate of 400'000 frames/sec. In this paper, we will review the main stages of the signal processing of the EUSO-Balloon instrument: the photodetection, the analog electronics, the trigger stages, which select events while rejecting random background, the electronic acquisition system which performs the data management and the monitoring, allowing the instrument control during operation. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
2014
The EUSO-Balloon instrument / Scotti, V.; Osteria, G.. - 0:(2014).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/743879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact