In this work, we study the problem of detecting multiple targets (echoes) and estimating their parameters by using the sector level sweep of the IEEE 802.11ad communication standard in order to realize an opportunistic radar at mmWaves. We derive an adaptive detector/estimator which extracts the prospective echoes one-by-one from the received signal, after removing the interference caused by the previously detected (stronger) targets. The numerical analysis indicates that the proposed solution can achieve detection and estimation performances close to those obtained in a single-target scenario.

An Iterative Interference Cancellation Algorithm for Opportunistic Sensing in IEEE 802.11AD Networks / Grossi, E.; Lops, M.; Venturino, L.. - (2019), pp. 141-145. (Intervento presentato al convegno 8th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2019 tenutosi a glp nel 2019) [10.1109/CAMSAP45676.2019.9022460].

An Iterative Interference Cancellation Algorithm for Opportunistic Sensing in IEEE 802.11AD Networks

Lops M.
;
Venturino L.
2019

Abstract

In this work, we study the problem of detecting multiple targets (echoes) and estimating their parameters by using the sector level sweep of the IEEE 802.11ad communication standard in order to realize an opportunistic radar at mmWaves. We derive an adaptive detector/estimator which extracts the prospective echoes one-by-one from the received signal, after removing the interference caused by the previously detected (stronger) targets. The numerical analysis indicates that the proposed solution can achieve detection and estimation performances close to those obtained in a single-target scenario.
2019
978-1-7281-5549-4
An Iterative Interference Cancellation Algorithm for Opportunistic Sensing in IEEE 802.11AD Networks / Grossi, E.; Lops, M.; Venturino, L.. - (2019), pp. 141-145. (Intervento presentato al convegno 8th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2019 tenutosi a glp nel 2019) [10.1109/CAMSAP45676.2019.9022460].
File in questo prodotto:
File Dimensione Formato  
CAMSAP_AD.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 377.24 kB
Formato Adobe PDF
377.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/809724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact