Longitudinal data over the past 20 years have seen a greater diffusion in the social sciences. Accompanying this growth was an interest in the methods for analyzing such data. Structural Equation Modeling (SEMs) and especially Partial Least Squares Path Modeling (PLS-PM) are a valuable way to analyze longitudinal data because it is both flexible and useful for answering common research questions. The aim of this paper is to demonstrate how PLS-PM can help us to analyze longitudinal data.

Longitudinal data analysis using PLS-PM approach / Cataldo, Rosanna; Crocetta, Corrado; Grassia, MARIA GABRIELLA; Marino, Marina. - (2020), pp. 1363-1368. (Intervento presentato al convegno SIS 2020 tenutosi a Pisa nel 2021).

Longitudinal data analysis using PLS-PM approach

Rosanna Cataldo;Maria Gabriella Grassia;Marina Marino
2020

Abstract

Longitudinal data over the past 20 years have seen a greater diffusion in the social sciences. Accompanying this growth was an interest in the methods for analyzing such data. Structural Equation Modeling (SEMs) and especially Partial Least Squares Path Modeling (PLS-PM) are a valuable way to analyze longitudinal data because it is both flexible and useful for answering common research questions. The aim of this paper is to demonstrate how PLS-PM can help us to analyze longitudinal data.
2020
9788891910776
Longitudinal data analysis using PLS-PM approach / Cataldo, Rosanna; Crocetta, Corrado; Grassia, MARIA GABRIELLA; Marino, Marina. - (2020), pp. 1363-1368. (Intervento presentato al convegno SIS 2020 tenutosi a Pisa nel 2021).
File in questo prodotto:
File Dimensione Formato  
2020-SIS-atti convegno1.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 148.97 kB
Formato Adobe PDF
148.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/820447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact