This research discusses the use of a systematic design method, the Iterative and Participative Axiomatic Design Process (IPADeP), for the early conceptual design stage of large-scale engineering systems. The involvement of multiple and competing requirements has imposed high challenges for achieving an affordable design of complex systems in a reasonable lead time. Systems Engineering (SE) focuses on how to design and manage complex systems over their life cycles. Both must begin by discovering the real problems that need to be resolved and identifying from the early stage of the design the main stakeholder requirements and customer needs. The Axiomatic Design (AD) methodology is widely recognized in the literature to efficiently support the design of complex systems from the early conceptual stage. IPADeP provides a systematic methodology for applying AD theory in the conceptual design of large-scale engineering systems, aiming to minimize the risks related to the uncertainty and incompleteness of requirements and to improve the collaboration of multi-disciplinary design teams. IPADeP has been adopted as design methodology in the pre-conceptual design stage of a subsystem of the DEMOnstration fusion power plant (DEMO): the divertor cassette body-to-vacuum vessel locking system. In this paper improvements in IPADeP are presented and its validity is discussed by presenting the application to the divertor system design.

Iterative and Participative Axiomatic Design Process to Improve Conceptual Design of Large-Scale Engineering Systems / Marzullo, D.; Di Gironimo, G.; Dongiovanni, D. N.; Lanzotti, A.; Mozzillo, R.; Tarallo, A.. - (2020), pp. 492-505. (Intervento presentato al convegno International Conference on Design Tools and Methods in Industrial Engineering, ADM 2019 tenutosi a ita nel 2019) [10.1007/978-3-030-31154-4_42].

Iterative and Participative Axiomatic Design Process to Improve Conceptual Design of Large-Scale Engineering Systems

Marzullo D.;Di Gironimo G.;Lanzotti A.;Mozzillo R.;Tarallo A.
2020

Abstract

This research discusses the use of a systematic design method, the Iterative and Participative Axiomatic Design Process (IPADeP), for the early conceptual design stage of large-scale engineering systems. The involvement of multiple and competing requirements has imposed high challenges for achieving an affordable design of complex systems in a reasonable lead time. Systems Engineering (SE) focuses on how to design and manage complex systems over their life cycles. Both must begin by discovering the real problems that need to be resolved and identifying from the early stage of the design the main stakeholder requirements and customer needs. The Axiomatic Design (AD) methodology is widely recognized in the literature to efficiently support the design of complex systems from the early conceptual stage. IPADeP provides a systematic methodology for applying AD theory in the conceptual design of large-scale engineering systems, aiming to minimize the risks related to the uncertainty and incompleteness of requirements and to improve the collaboration of multi-disciplinary design teams. IPADeP has been adopted as design methodology in the pre-conceptual design stage of a subsystem of the DEMOnstration fusion power plant (DEMO): the divertor cassette body-to-vacuum vessel locking system. In this paper improvements in IPADeP are presented and its validity is discussed by presenting the application to the divertor system design.
2020
978-3-030-31153-7
978-3-030-31154-4
Iterative and Participative Axiomatic Design Process to Improve Conceptual Design of Large-Scale Engineering Systems / Marzullo, D.; Di Gironimo, G.; Dongiovanni, D. N.; Lanzotti, A.; Mozzillo, R.; Tarallo, A.. - (2020), pp. 492-505. (Intervento presentato al convegno International Conference on Design Tools and Methods in Industrial Engineering, ADM 2019 tenutosi a ita nel 2019) [10.1007/978-3-030-31154-4_42].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/833003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact