Multidimensional compositional arrays require special analytical tools to be modeled. Specifically, the variation of the data can be captured by linear combinations of a defined number of parameters, capable of describing the complexity of the data. Usually these models are described as generalizations of Principal Component Analysis to higher order cases. Here the Candecomp/Parafac (CP) model is defined for compositional data contaminated with extreme observations by using a novel integrated SWATLD-ALS algorithm. Since the new procedure does not find a solution in the least square sense, it is expected to have a better performance in terms of sensitivity to outliers than ALS. However, due to the instability of its loss function, it should not be used alone.

Fitting the CANDECOMP-PARAFAC model to compositional data: a combined SWATLD-ALS algorithm / Simonacci, V; Di Palma, Ma; Todorov, V. - (2016). (Intervento presentato al convegno Innovazione & Società, Metodi Statistici per la valutazione. 48th Meeting of the Italian Statistical Society tenutosi a Fisciano (SA) Università degli Studi di Salerno - Campus universitario di Fisciano).

Fitting the CANDECOMP-PARAFAC model to compositional data: a combined SWATLD-ALS algorithm.

Simonacci V;
2016

Abstract

Multidimensional compositional arrays require special analytical tools to be modeled. Specifically, the variation of the data can be captured by linear combinations of a defined number of parameters, capable of describing the complexity of the data. Usually these models are described as generalizations of Principal Component Analysis to higher order cases. Here the Candecomp/Parafac (CP) model is defined for compositional data contaminated with extreme observations by using a novel integrated SWATLD-ALS algorithm. Since the new procedure does not find a solution in the least square sense, it is expected to have a better performance in terms of sensitivity to outliers than ALS. However, due to the instability of its loss function, it should not be used alone.
2016
9788861970618
Fitting the CANDECOMP-PARAFAC model to compositional data: a combined SWATLD-ALS algorithm / Simonacci, V; Di Palma, Ma; Todorov, V. - (2016). (Intervento presentato al convegno Innovazione & Società, Metodi Statistici per la valutazione. 48th Meeting of the Italian Statistical Society tenutosi a Fisciano (SA) Università degli Studi di Salerno - Campus universitario di Fisciano).
File in questo prodotto:
File Dimensione Formato  
1-SIS2016.pdf

non disponibili

Dimensione 6.25 MB
Formato Adobe PDF
6.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/872753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact