My contribution concentrates on two main goals: first, I try to empirically deconstruct algorithms opacity by opening up their «black box» through my participation in an interdisciplinary group of experts. We designed an artificial intelligence project for the early prevention of heart stroke (AICARDIO). Secondly, I demonstrate to a non-expert audience how our (big) data feeds artificial intelligence algorithms easily and unnoticeably in our everyday lives. I reversed my role from being an observed «subject» of security surveillance to becoming a «designer» of algorithm technology for patients’ health surveillance, struggling to protect data privacy. I analyze several empirical examples (the meta-observer; without data, algorithms are useless; algorithmic literacy; the project’s soul; face emotion recognition; and privacy matters). Algorithms do not appear as SW-engineered instructions to carry out tasks. My research will show that the mediating processes of our interdisciplinary group of experts lead us to the construction of algorithms bridging the tension and mediation of multiple socio-tech-med cultures and human bias. The invisibility of AI-based surveillance technology seems to be a controversial issue in many domains, for example, home-based health monitoring systems. A heterogeneous ecosystem competes in complex human and non-human practices in algorithmic societies, creating an autopoietic ecosystem affecting our everyday lives, that still needs a rapidly evolving and human-centric AI governance.
Algorithms Multi-culture: a socio-tech-med approach to digital health and a few surveillance nightmares / Murero, Monica. - (2021). (Intervento presentato al convegno Etnografie di algoritmi e (big) data . The 8th Ethnography and Qualitative Research Conference nel 19-21 giugno 2021).
Algorithms Multi-culture: a socio-tech-med approach to digital health and a few surveillance nightmares
Monica Murero
2021
Abstract
My contribution concentrates on two main goals: first, I try to empirically deconstruct algorithms opacity by opening up their «black box» through my participation in an interdisciplinary group of experts. We designed an artificial intelligence project for the early prevention of heart stroke (AICARDIO). Secondly, I demonstrate to a non-expert audience how our (big) data feeds artificial intelligence algorithms easily and unnoticeably in our everyday lives. I reversed my role from being an observed «subject» of security surveillance to becoming a «designer» of algorithm technology for patients’ health surveillance, struggling to protect data privacy. I analyze several empirical examples (the meta-observer; without data, algorithms are useless; algorithmic literacy; the project’s soul; face emotion recognition; and privacy matters). Algorithms do not appear as SW-engineered instructions to carry out tasks. My research will show that the mediating processes of our interdisciplinary group of experts lead us to the construction of algorithms bridging the tension and mediation of multiple socio-tech-med cultures and human bias. The invisibility of AI-based surveillance technology seems to be a controversial issue in many domains, for example, home-based health monitoring systems. A heterogeneous ecosystem competes in complex human and non-human practices in algorithmic societies, creating an autopoietic ecosystem affecting our everyday lives, that still needs a rapidly evolving and human-centric AI governance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.