This paper reports the outcome of an industrial research project on data-based anomaly detection in a steel making production process. Namely, the study aims to assess a fault detection strategy for rotating machines in the hot rolling mill line. Due to the adopted intense and expensive preventive maintenance program, available data enclose only few samples of fault events, avoiding efficient application of classical data driven anomaly detection models. We developed an automatic two-step strategy which combines two statistical methods. Namely, the combination of Reweighted Minimum Covariance Determinant estimator and Hidden Markov Models helped to identify actual conditions in a drive reducer of a hot steel rolling mill and automatically isolate signs of decreasing performance or upcoming failures.

Robust statistics-based anomaly detection in a steel industry / Acernese, A.; Sarda, K.; Nole, V.; Manfredi, L.; Greco, L.; Glielmo, L.; Del Vecchio, C.. - (2021), pp. 1058-1063. (Intervento presentato al convegno 29th Mediterranean Conference on Control and Automation, MED 2021 tenutosi a ita nel 2021) [10.1109/MED51440.2021.9480311].

Robust statistics-based anomaly detection in a steel industry

Glielmo L.;Del Vecchio C.
2021

Abstract

This paper reports the outcome of an industrial research project on data-based anomaly detection in a steel making production process. Namely, the study aims to assess a fault detection strategy for rotating machines in the hot rolling mill line. Due to the adopted intense and expensive preventive maintenance program, available data enclose only few samples of fault events, avoiding efficient application of classical data driven anomaly detection models. We developed an automatic two-step strategy which combines two statistical methods. Namely, the combination of Reweighted Minimum Covariance Determinant estimator and Hidden Markov Models helped to identify actual conditions in a drive reducer of a hot steel rolling mill and automatically isolate signs of decreasing performance or upcoming failures.
2021
978-1-6654-2258-1
Robust statistics-based anomaly detection in a steel industry / Acernese, A.; Sarda, K.; Nole, V.; Manfredi, L.; Greco, L.; Glielmo, L.; Del Vecchio, C.. - (2021), pp. 1058-1063. (Intervento presentato al convegno 29th Mediterranean Conference on Control and Automation, MED 2021 tenutosi a ita nel 2021) [10.1109/MED51440.2021.9480311].
File in questo prodotto:
File Dimensione Formato  
Robust_Statistics-based_Anomaly_Detection_in_a_Steel_Industry.pdf

non disponibili

Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/910609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact