Gene therapy using adeno-associated viral (AAV) vectors currently represents the most promising approach for the treatment of many inherited retinal diseases (IRDs), given AAV’s ability to efficiently deliver therapeutic genes to both photoreceptors and retinal pigment epithelium, and their excellent safety and efficacy profiles in humans. However, one of the main obstacles to widespread AAV application is their limited packaging capacity, which precludes their use from the treatment of IRDs which are caused by mutations in genes whose coding sequence exceeds 5 kb. Therefore, in recent years, considerable effort has been made to identify strategies to increase the transfer capacity of AAV vectors. This review will discuss these new developed strategies, highlighting the advancements as well as the limitations that the field has still to overcome to finally expand the applicability of AAV vectors to IRDs due to mutations in large genes.
Adeno-associated viral vectors as a tool for large gene delivery to the retina / Trapani, I.. - In: GENES. - ISSN 2073-4425. - 10:4(2019), p. 287. [10.3390/genes10040287]
Adeno-associated viral vectors as a tool for large gene delivery to the retina
Trapani I.
2019
Abstract
Gene therapy using adeno-associated viral (AAV) vectors currently represents the most promising approach for the treatment of many inherited retinal diseases (IRDs), given AAV’s ability to efficiently deliver therapeutic genes to both photoreceptors and retinal pigment epithelium, and their excellent safety and efficacy profiles in humans. However, one of the main obstacles to widespread AAV application is their limited packaging capacity, which precludes their use from the treatment of IRDs which are caused by mutations in genes whose coding sequence exceeds 5 kb. Therefore, in recent years, considerable effort has been made to identify strategies to increase the transfer capacity of AAV vectors. This review will discuss these new developed strategies, highlighting the advancements as well as the limitations that the field has still to overcome to finally expand the applicability of AAV vectors to IRDs due to mutations in large genes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.