This paper deals with the thermal management of Li-NMC battery packs for their use in electric vehicle applications. In particular, starting from a literature analysis, different kinds of battery thermal management systems (BTMSs) are evaluated and compared, in terms of their main advantages and drawbacks related to cost and complexity. A specific case study focused on a BTMS, based on forced air cooling, for a Li-NMC battery pack is then proposed, with the application of a simple temperature control strategy. Numerical evaluations are carried out in simulation environment by means of a Matlab/Simulink storage cell electro-thermal model, which has been parametrized and validated through experimental procedures. Simulation results, obtained in different operative conditions, highlight the positive effects of using BTMS with particular reference to high power demanding battery charging and discharging operations.
Battery Thermal Management Systems: A Case Study on Li-NMC storage systems for electric vehicles / Capasso, C.; Iannucci, L.; Patalano, S.; Veneri, O.; Vitolo, F.. - (2023), pp. 1-7. (Intervento presentato al convegno 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, ESARS-ITEC 2023 tenutosi a ita nel 2023) [10.1109/ESARS-ITEC57127.2023.10114867].
Battery Thermal Management Systems: A Case Study on Li-NMC storage systems for electric vehicles
Iannucci L.;Patalano S.;Vitolo F.
2023
Abstract
This paper deals with the thermal management of Li-NMC battery packs for their use in electric vehicle applications. In particular, starting from a literature analysis, different kinds of battery thermal management systems (BTMSs) are evaluated and compared, in terms of their main advantages and drawbacks related to cost and complexity. A specific case study focused on a BTMS, based on forced air cooling, for a Li-NMC battery pack is then proposed, with the application of a simple temperature control strategy. Numerical evaluations are carried out in simulation environment by means of a Matlab/Simulink storage cell electro-thermal model, which has been parametrized and validated through experimental procedures. Simulation results, obtained in different operative conditions, highlight the positive effects of using BTMS with particular reference to high power demanding battery charging and discharging operations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.