This paper focuses on the designing of tracking control strategies for ground-based telescopes by also comparing model-based solutions with more classical alternatives. Within this framework, we synthesize a double-layer control architecture consisting of: i) a position control layer, which combines a Kalman filter observer and Linear-Quadratic-Gaussian-Proportional-Integral (LQG-PI) controller to compute the appropriate speed profile guaranteeing a reliable tracking of a given telescope position trajectories; ii) a speed control layer, which ensures the optimal tracking of the computed speed profile by driving the torque of the telescope. Moreover, a trapezoidal speed pre-processor is embedded in our control architecture with the aim of computing the appropriate telescope axes position trajectories: this ensures that all the telescope physical constraints, in terms of speed and acceleration, are not always violated. Virtual simulations, carried out via an ad-hoc simulation platform, implemented in Matalb&Simulink and tailored for the specific case study Telescopio Nazionale Galileo (TNG) located at La Palma island, disclose the effectiveness of the hierarchical control architecture for a representative set of star trajectories. Validation phase also considers several realistic conditions and takes into account input disturbance such as the Von-Karman wind disturbance model. Finally, a comparison analysis with a PID-based control architecture is provided to discuss about the advantages and benefits of the proposed optimal control solution.

Model-Based Optimal Tracking Control Architecture For Ground-Based Telescopes / Basile, G.; Gonzalez, M.; Petrillo, A.; Santini, S.; Savarese, S.; Schipani, P.. - 13094:(2024). (Intervento presentato al convegno Ground-Based and Airborne Telescopes X 2024 tenutosi a jpn nel 2024) [10.1117/12.3020102].

Model-Based Optimal Tracking Control Architecture For Ground-Based Telescopes

Basile G.;Petrillo A.
;
Santini S.;
2024

Abstract

This paper focuses on the designing of tracking control strategies for ground-based telescopes by also comparing model-based solutions with more classical alternatives. Within this framework, we synthesize a double-layer control architecture consisting of: i) a position control layer, which combines a Kalman filter observer and Linear-Quadratic-Gaussian-Proportional-Integral (LQG-PI) controller to compute the appropriate speed profile guaranteeing a reliable tracking of a given telescope position trajectories; ii) a speed control layer, which ensures the optimal tracking of the computed speed profile by driving the torque of the telescope. Moreover, a trapezoidal speed pre-processor is embedded in our control architecture with the aim of computing the appropriate telescope axes position trajectories: this ensures that all the telescope physical constraints, in terms of speed and acceleration, are not always violated. Virtual simulations, carried out via an ad-hoc simulation platform, implemented in Matalb&Simulink and tailored for the specific case study Telescopio Nazionale Galileo (TNG) located at La Palma island, disclose the effectiveness of the hierarchical control architecture for a representative set of star trajectories. Validation phase also considers several realistic conditions and takes into account input disturbance such as the Von-Karman wind disturbance model. Finally, a comparison analysis with a PID-based control architecture is provided to discuss about the advantages and benefits of the proposed optimal control solution.
2024
Model-Based Optimal Tracking Control Architecture For Ground-Based Telescopes / Basile, G.; Gonzalez, M.; Petrillo, A.; Santini, S.; Savarese, S.; Schipani, P.. - 13094:(2024). (Intervento presentato al convegno Ground-Based and Airborne Telescopes X 2024 tenutosi a jpn nel 2024) [10.1117/12.3020102].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/981273
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact