Cloud computing is currently a thriving technology. Due to their critical nature, it is necessary to consider all kinds of intrusions and abuses that typically plague cloud environments. In order to maintain its resilient-state, a cloud system should have tools capable of detecting known and updated threats, but also unknown attacks (0-day). This paper presents a two-level deep learning architecture for detecting multiple attack classes. In particular, it is an extension of a previous study with a dual objective: reducing the false alarm rate and improving the detection rate, and testing the system with different types of attacks. The problem is treated as a semi-supervised task, and the anomaly detector exploits deep autoencoder building blocks. The model is described and tested on the recent CICIDS2017 and CSE-CIC-IDS2018 datasets. The performance comparison with our previous study shows a lower false alarm rate and the validity of the model for multiple attack classes.
2L-ZED-IDS: A Two-Level Anomaly Detector for Multiple Attack Classes / Catillo, M.; Rak, M.; Villano, U.. - 1150:(2020), pp. 687-696. [10.1007/978-3-030-44038-1_63]
2L-ZED-IDS: A Two-Level Anomaly Detector for Multiple Attack Classes
Rak M.;
2020
Abstract
Cloud computing is currently a thriving technology. Due to their critical nature, it is necessary to consider all kinds of intrusions and abuses that typically plague cloud environments. In order to maintain its resilient-state, a cloud system should have tools capable of detecting known and updated threats, but also unknown attacks (0-day). This paper presents a two-level deep learning architecture for detecting multiple attack classes. In particular, it is an extension of a previous study with a dual objective: reducing the false alarm rate and improving the detection rate, and testing the system with different types of attacks. The problem is treated as a semi-supervised task, and the anomaly detector exploits deep autoencoder building blocks. The model is described and tested on the recent CICIDS2017 and CSE-CIC-IDS2018 datasets. The performance comparison with our previous study shows a lower false alarm rate and the validity of the model for multiple attack classes.File | Dimensione | Formato | |
---|---|---|---|
reprint.pdf
non disponibili
Licenza:
Non specificato
Dimensione
696.47 kB
Formato
Adobe PDF
|
696.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.