We introduce a one-sided incidence tree decomposition of a CNF $\varphi$. This is a tree decomposition of the incidence graph of $\varphi$ where the underlying tree is rooted and the set of bags containing each clause induces a directed path in the tree. The one-sided treewidth is the smallest width of a one-sided incidence tree decomposition. We consider a class of unsatisfiable CNF $\varphi$ that can be turned into one of one sided treewidth at most $k$ by removal of at most $p$ clauses. We show that the size of regular resolution for this class of CNFs is FPT parameterized by $k$ and $p$. The results contributes to understanding the complexity of resolution for CNFs of bounded incidence treewidth, an open problem well known in the areas of proof complexity and knowledge compilation. In particular, the result significantly generalizes all the restricted classes of CNFs of bounded incidence treewidth that are known to admit an FPT sized resolution. The proof includes an auxiliary result and several new notions that may be of an independent interest.

Regular resolution for CNFs with almost bounded one-sided treewidth / Cali, Andrea; Razgon, Igor. - (2019).

Regular resolution for CNFs with almost bounded one-sided treewidth

Andrea Cali;
2019

Abstract

We introduce a one-sided incidence tree decomposition of a CNF $\varphi$. This is a tree decomposition of the incidence graph of $\varphi$ where the underlying tree is rooted and the set of bags containing each clause induces a directed path in the tree. The one-sided treewidth is the smallest width of a one-sided incidence tree decomposition. We consider a class of unsatisfiable CNF $\varphi$ that can be turned into one of one sided treewidth at most $k$ by removal of at most $p$ clauses. We show that the size of regular resolution for this class of CNFs is FPT parameterized by $k$ and $p$. The results contributes to understanding the complexity of resolution for CNFs of bounded incidence treewidth, an open problem well known in the areas of proof complexity and knowledge compilation. In particular, the result significantly generalizes all the restricted classes of CNFs of bounded incidence treewidth that are known to admit an FPT sized resolution. The proof includes an auxiliary result and several new notions that may be of an independent interest.
2019
Regular resolution for CNFs with almost bounded one-sided treewidth / Cali, Andrea; Razgon, Igor. - (2019).
File in questo prodotto:
File Dimensione Formato  
arxiv-19_1905.10867v2.pdf

accesso aperto

Licenza: Creative commons
Dimensione 562.07 kB
Formato Adobe PDF
562.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/990781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact