We discuss the analysis of magnetic data in salt basins and their potential role as a key tool in these scenarios. The study was performed on the magnetic data of a deep-water area in the offshore Egypt, Eastern Mediterranean. The reduced to pole (RTP) magnetic anomalies was computed and filtered with the discrete wavelet transform (DWT) for the regional-residual separation. The filtered anomalies were interpreted as due to the contrast between the sedimentary layers and the diamagnetic salt dome. The multiscale boundary analysis allowed the extraction of lineaments representative of the salt bodies. Moreover, the inversion of the data using a 3D non-linear non-iterative technique produced a map of the salt in the area, which was derived without constraints from seismic or other external information. from the magnetic data interpretation was performed. It needed only a local estimation of the depth to the salt in few points, as provided by Euler deconvolution of magnetic data. This result well agrees with the top of the salt interpreted from the seismic data. Our findings are not obvious and demonstrate the potential of magnetic surveys as a self-consistent and low-cost tool in the exploration of salt basins, especially when the higher resolution seismic interpretation could suffer of possible pitfalls or seismic data are inaccessible.
Can salt basins be modelled by magnetic data? A successful case study in the Eastern Mediterranean / Bianco, Luigi; AHMED ABBAS AHMED, Mahmoud; Speranza, Luca; Garcea, Bruno; Fedi, Maurizio. - 2024:(2024), p. 10535. (Intervento presentato al convegno EGU General Assembly Conference) [10.5194/egusphere-egu24-10535].
Can salt basins be modelled by magnetic data? A successful case study in the Eastern Mediterranean
Luigi Bianco;Mahmoud Ahmed Abbas;Maurizio Fedi
2024
Abstract
We discuss the analysis of magnetic data in salt basins and their potential role as a key tool in these scenarios. The study was performed on the magnetic data of a deep-water area in the offshore Egypt, Eastern Mediterranean. The reduced to pole (RTP) magnetic anomalies was computed and filtered with the discrete wavelet transform (DWT) for the regional-residual separation. The filtered anomalies were interpreted as due to the contrast between the sedimentary layers and the diamagnetic salt dome. The multiscale boundary analysis allowed the extraction of lineaments representative of the salt bodies. Moreover, the inversion of the data using a 3D non-linear non-iterative technique produced a map of the salt in the area, which was derived without constraints from seismic or other external information. from the magnetic data interpretation was performed. It needed only a local estimation of the depth to the salt in few points, as provided by Euler deconvolution of magnetic data. This result well agrees with the top of the salt interpreted from the seismic data. Our findings are not obvious and demonstrate the potential of magnetic surveys as a self-consistent and low-cost tool in the exploration of salt basins, especially when the higher resolution seismic interpretation could suffer of possible pitfalls or seismic data are inaccessible.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


