Over the last decades, plenty of ancient manuscripts have been digitized all over the world, and particularly in Europe. The fruition of these huge digital archives is often limited by the bleed-through effect due to the acid nature of the inks used, resulting in very noisy images. Several authors have recently worked on bleed-through removal, using different approaches. With the aim of developing a bleed-through removal tool, capable of batch application on a large number of images, of the order of hundred thousands, we used machine learning and robust statistical methods with four different methods, and applied them to two medieval manuscripts. The methods used are (i) non-local means (NLM); (ii) Gaussian mixture models (GMMs); (iii) biweight estimation; and (iv) Gaussian blur. The application of these methods to the two quoted manuscripts shows that these methods are, in general, quite effective in bleed-through removal, but the selection of the method has to be performed according to the characteristics of the manuscript, e.g., if there is no ink fading and the difference between bleed-through pixels and the foreground text is clear, we can use a stronger model without the risk of losing important information. Conversely, if the distinction between bleed-through and foreground pixels is less pronounced, it is better to use a weaker model to preserve useful details.
Minimizing Bleed-Through Effect in Medieval Manuscripts with Machine Learning and Robust Statistics / Ettari, Adriano; Brescia, Massimo; Conte, Stefania; Momtaz, Yahya; Russo, Guido. - In: JOURNAL OF IMAGING. - ISSN 2313-433X. - 11:5(2025). [10.3390/jimaging11050136]
Minimizing Bleed-Through Effect in Medieval Manuscripts with Machine Learning and Robust Statistics
Ettari Adriano;Brescia Massimo
;Conte Stefania;Momtaz Yahya;Russo Guido
2025
Abstract
Over the last decades, plenty of ancient manuscripts have been digitized all over the world, and particularly in Europe. The fruition of these huge digital archives is often limited by the bleed-through effect due to the acid nature of the inks used, resulting in very noisy images. Several authors have recently worked on bleed-through removal, using different approaches. With the aim of developing a bleed-through removal tool, capable of batch application on a large number of images, of the order of hundred thousands, we used machine learning and robust statistical methods with four different methods, and applied them to two medieval manuscripts. The methods used are (i) non-local means (NLM); (ii) Gaussian mixture models (GMMs); (iii) biweight estimation; and (iv) Gaussian blur. The application of these methods to the two quoted manuscripts shows that these methods are, in general, quite effective in bleed-through removal, but the selection of the method has to be performed according to the characteristics of the manuscript, e.g., if there is no ink fading and the difference between bleed-through pixels and the foreground text is clear, we can use a stronger model without the risk of losing important information. Conversely, if the distinction between bleed-through and foreground pixels is less pronounced, it is better to use a weaker model to preserve useful details.| File | Dimensione | Formato | |
|---|---|---|---|
|
jimaging-11-00136-with-cover.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
7.68 MB
Formato
Adobe PDF
|
7.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


