The aim of this paper is to give a new proof that any very weak s-harmonic function u in the unit ball B is smooth. As a first step, we improve the local summability properties of u. Then, we exploit a suitable version of the difference quotient method tailored to get rid of the singularity of the integral kernel and gain Sobolev regularity and local linear estimates of the Hlocs norm of u. Finally, by applying more standard methods, such as elliptic regularity and Schauder estimates, we reach the real analyticity of u. Up to the authors’ knowledge, the difference quotient techniques are new.

Local regularity of very weak $s$-harmonic functions via fractional difference quotients / Carbotti, Alessandro; Cito, Simone; LA MANNA, DOMENICO ANGELO; Pallara, Diego. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1720-0768. - 35:3(2025), pp. 365-395. [10.4171/rlm/1045]

Local regularity of very weak $s$-harmonic functions via fractional difference quotients

Domenico Angelo La Manna;
2025

Abstract

The aim of this paper is to give a new proof that any very weak s-harmonic function u in the unit ball B is smooth. As a first step, we improve the local summability properties of u. Then, we exploit a suitable version of the difference quotient method tailored to get rid of the singularity of the integral kernel and gain Sobolev regularity and local linear estimates of the Hlocs norm of u. Finally, by applying more standard methods, such as elliptic regularity and Schauder estimates, we reach the real analyticity of u. Up to the authors’ knowledge, the difference quotient techniques are new.
2025
Local regularity of very weak $s$-harmonic functions via fractional difference quotients / Carbotti, Alessandro; Cito, Simone; LA MANNA, DOMENICO ANGELO; Pallara, Diego. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1720-0768. - 35:3(2025), pp. 365-395. [10.4171/rlm/1045]
File in questo prodotto:
File Dimensione Formato  
17.CCLP-RLM.pdf

accesso aperto

Licenza: Creative commons
Dimensione 481.08 kB
Formato Adobe PDF
481.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1002875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact