Accuratelytrackingparticlesanddeterminingtheircoordinatealongtheopticalaxisisa majorchallengeinopticalmicroscopy,especiallywhenextremelyhighprecisionisneeded. Inthis study,weintroduceadeeplearningapproachusingconvolutionalneuralnetworks(CNNs)thatcan determine axial coordinates from dual-focal-plane images without relying on predefined models. Our method achieves an axiallocalizationprecision of40 nanometers — six times better than traditional single-focal-planetechniques. Themodel’ssimpledesignandstrongperformancemakeitsuitable for a wide range of uses, including dark matter detection, proton therapy for cancer, and radiation protection in space. It also shows promise in fields like biological imaging, materials science, and environmental monitoring. This work highlights how machine learning can turn complex image data into reliable, precise information, offering a flexible and powerful tool for many scientific applications.

Model-independent machine learning approach for nanometric axial localization and tracking / Alexandrov, Andrey; Acampora, Giovanni; De Lellis, Giovanni; Di Crescenzo, Antonia; Errico, Chiara; Morozova, Daria; Tioukov, Valeri; Vitiello, Autilia. - In: JOURNAL OF INSTRUMENTATION. - ISSN 1748-0221. - 20:09(2025). [10.1088/1748-0221/20/09/p09035]

Model-independent machine learning approach for nanometric axial localization and tracking

Alexandrov, Andrey
;
Acampora, Giovanni;De Lellis, Giovanni;Di Crescenzo, Antonia;Morozova, Daria;Vitiello, Autilia
2025

Abstract

Accuratelytrackingparticlesanddeterminingtheircoordinatealongtheopticalaxisisa majorchallengeinopticalmicroscopy,especiallywhenextremelyhighprecisionisneeded. Inthis study,weintroduceadeeplearningapproachusingconvolutionalneuralnetworks(CNNs)thatcan determine axial coordinates from dual-focal-plane images without relying on predefined models. Our method achieves an axiallocalizationprecision of40 nanometers — six times better than traditional single-focal-planetechniques. Themodel’ssimpledesignandstrongperformancemakeitsuitable for a wide range of uses, including dark matter detection, proton therapy for cancer, and radiation protection in space. It also shows promise in fields like biological imaging, materials science, and environmental monitoring. This work highlights how machine learning can turn complex image data into reliable, precise information, offering a flexible and powerful tool for many scientific applications.
2025
Model-independent machine learning approach for nanometric axial localization and tracking / Alexandrov, Andrey; Acampora, Giovanni; De Lellis, Giovanni; Di Crescenzo, Antonia; Errico, Chiara; Morozova, Daria; Tioukov, Valeri; Vitiello, Autilia. - In: JOURNAL OF INSTRUMENTATION. - ISSN 1748-0221. - 20:09(2025). [10.1088/1748-0221/20/09/p09035]
File in questo prodotto:
File Dimensione Formato  
Alexandrov_2025_J._Inst._20_P09035.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1010794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact