Over the past few decades, electroencephalography monitoring has become a pivotal tool for diagnosing neurological disorders, particularly for detecting seizures. Epilepsy, one of the most prevalent neurological diseases worldwide, affects approximately 1 % of the population. These patients face significant risks, underscoring the need for reliable, continuous seizure monitoring in daily life. Most of the techniques discussed in the literature rely on supervised machine learning methods. However, the challenge of accurately labeling variations in epileptic electroencephalography waveforms complicates the use of these approaches. Additionally, the rarity of ictal events introduces a high imbalance within the data, which could lead to poor prediction performance in supervised learning approaches. Instead, a semi-supervised approach allows training the model only on data that does not contain seizures, thus avoiding the issues related to the data imbalance. This work introduces a semi-supervised approach for detecting epileptic seizures from electroencephalography data based on a novel deep learning-based method called SincVAE. This method integrates SincNet, designed to learn an ad-hoc array of bandpass filters, as the first layer of a variational autoencoder, potentially eliminating the preprocessing stage where informative frequency bands are identified and isolated. Experimental evaluations on the Bonn and CHB-MIT datasets indicate that SincVAE improves seizure detection in electroencephalography data, with the capability to identify early seizures during the preictal stage and monitor patients throughout the postictal stage.

SincVAE: A new semi-supervised approach to improve anomaly detection on EEG data using SincNet and variational autoencoder / Pollastro, Andrea; Isgrò, Francesco; Prevete, Roberto. - In: COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE UPDATE. - ISSN 2666-9900. - 8:(2025). [10.1016/j.cmpbup.2025.100213]

SincVAE: A new semi-supervised approach to improve anomaly detection on EEG data using SincNet and variational autoencoder

Pollastro, Andrea
;
Isgrò, Francesco;Prevete, Roberto
2025

Abstract

Over the past few decades, electroencephalography monitoring has become a pivotal tool for diagnosing neurological disorders, particularly for detecting seizures. Epilepsy, one of the most prevalent neurological diseases worldwide, affects approximately 1 % of the population. These patients face significant risks, underscoring the need for reliable, continuous seizure monitoring in daily life. Most of the techniques discussed in the literature rely on supervised machine learning methods. However, the challenge of accurately labeling variations in epileptic electroencephalography waveforms complicates the use of these approaches. Additionally, the rarity of ictal events introduces a high imbalance within the data, which could lead to poor prediction performance in supervised learning approaches. Instead, a semi-supervised approach allows training the model only on data that does not contain seizures, thus avoiding the issues related to the data imbalance. This work introduces a semi-supervised approach for detecting epileptic seizures from electroencephalography data based on a novel deep learning-based method called SincVAE. This method integrates SincNet, designed to learn an ad-hoc array of bandpass filters, as the first layer of a variational autoencoder, potentially eliminating the preprocessing stage where informative frequency bands are identified and isolated. Experimental evaluations on the Bonn and CHB-MIT datasets indicate that SincVAE improves seizure detection in electroencephalography data, with the capability to identify early seizures during the preictal stage and monitor patients throughout the postictal stage.
2025
SincVAE: A new semi-supervised approach to improve anomaly detection on EEG data using SincNet and variational autoencoder / Pollastro, Andrea; Isgrò, Francesco; Prevete, Roberto. - In: COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE UPDATE. - ISSN 2666-9900. - 8:(2025). [10.1016/j.cmpbup.2025.100213]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2666990025000382-main.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 5.53 MB
Formato Adobe PDF
5.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1014916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact