The eigenvalues of a signed graph are the eigenvalues of its adjacency matrix. In this paper, we consider the problem of identifying the signed graphs with a small number of positive eigenvalues. We characterize the complete signed graphs having exactly two positive eigenvalues. In addition, we completely characterize the complete bipartite signed graphs having exactly three positive eigenvalues.

On signed graphs with at most three positive eigenvalues / Wang, Y.; Belardo, F.; Li, D.. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 729:(2026), pp. 293-307. [10.1016/j.laa.2025.10.005]

On signed graphs with at most three positive eigenvalues

Belardo F.;
2026

Abstract

The eigenvalues of a signed graph are the eigenvalues of its adjacency matrix. In this paper, we consider the problem of identifying the signed graphs with a small number of positive eigenvalues. We characterize the complete signed graphs having exactly two positive eigenvalues. In addition, we completely characterize the complete bipartite signed graphs having exactly three positive eigenvalues.
2026
On signed graphs with at most three positive eigenvalues / Wang, Y.; Belardo, F.; Li, D.. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 729:(2026), pp. 293-307. [10.1016/j.laa.2025.10.005]
File in questo prodotto:
File Dimensione Formato  
On signed graphs with at most three positive eigenvalues.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 652.95 kB
Formato Adobe PDF
652.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1017633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact