For a connected graph G of order n, let D(G) be the distance matrix and Tr(G) be the diagonal matrix of vertex transmissions of G. The dis- tance signless Laplacian (dsL, for short) matrix of G is defined as DQ(G) = Tr(G)+D(G), and the corresponding eigenvalues are the dsL eigenvalues of G. For an interval I, let mDQ(G)I denote the number of dsL eigenvalues of G lying in the interval I. In this paper, for some prescribed interval I, we obtain bounds for mDQ(G)I in terms of the independence number α and the chromatic number χ of G. Furthermore, we provide lower bounds of @Q 1 (G), the dsL spectral radius, for certain families of graphs in terms of the order n and the independence number χ, or the chromatic number χ.
On the distribution of distance signless Laplacian eigenvalues with given independence and chromatic number / Pirzada, S.; Khan, S.; Belardo, F.. - In: DISCUSSIONES MATHEMATICAE. GRAPH THEORY. - ISSN 1234-3099. - 45:1(2025), pp. 111-128. [10.7151/dmgt.2524]
On the distribution of distance signless Laplacian eigenvalues with given independence and chromatic number
Belardo F.
2025
Abstract
For a connected graph G of order n, let D(G) be the distance matrix and Tr(G) be the diagonal matrix of vertex transmissions of G. The dis- tance signless Laplacian (dsL, for short) matrix of G is defined as DQ(G) = Tr(G)+D(G), and the corresponding eigenvalues are the dsL eigenvalues of G. For an interval I, let mDQ(G)I denote the number of dsL eigenvalues of G lying in the interval I. In this paper, for some prescribed interval I, we obtain bounds for mDQ(G)I in terms of the independence number α and the chromatic number χ of G. Furthermore, we provide lower bounds of @Q 1 (G), the dsL spectral radius, for certain families of graphs in terms of the order n and the independence number χ, or the chromatic number χ.| File | Dimensione | Formato | |
|---|---|---|---|
|
DMGT-2524.pdf
solo utenti autorizzati
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
203.71 kB
Formato
Adobe PDF
|
203.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


