This paper deals with the interior higher differentiability of the solution u to the Dirichlet problem related to system $ -\textrm{div} (A(x) Du) + B(x,u)=f$ on a bounded lipschitz domain $\Omega$ in $\mathbb R^n$. The matrix $A(x)$ lies in the John and Nirenberg space $BMO$. The lower order term $B(x,u)$ is controlled with respect to spatial variable by a function $b(x)$ belonging to the Marcinkiewicz space $L^{n, \infty}$. The novelty here is the presence of a singular coefficient in the lower order term.

An Interior Regularity Property for the Solution to a Linear Elliptic System with Singular Coefficients in the Lower-Order Term / Radice, T.. - In: MATHEMATICS. - ISSN 2227-7390. - 13:3(2025). [10.3390/math13030489]

An Interior Regularity Property for the Solution to a Linear Elliptic System with Singular Coefficients in the Lower-Order Term

Radice T.
2025

Abstract

This paper deals with the interior higher differentiability of the solution u to the Dirichlet problem related to system $ -\textrm{div} (A(x) Du) + B(x,u)=f$ on a bounded lipschitz domain $\Omega$ in $\mathbb R^n$. The matrix $A(x)$ lies in the John and Nirenberg space $BMO$. The lower order term $B(x,u)$ is controlled with respect to spatial variable by a function $b(x)$ belonging to the Marcinkiewicz space $L^{n, \infty}$. The novelty here is the presence of a singular coefficient in the lower order term.
2025
An Interior Regularity Property for the Solution to a Linear Elliptic System with Singular Coefficients in the Lower-Order Term / Radice, T.. - In: MATHEMATICS. - ISSN 2227-7390. - 13:3(2025). [10.3390/math13030489]
File in questo prodotto:
File Dimensione Formato  
Mathematics.pdf

accesso aperto

Licenza: Non specificato
Dimensione 280.08 kB
Formato Adobe PDF
280.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1018418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact