The diffusion model for a population subject to Malthusian growth is generalized to include regulation effects. This is done by incorporating a logarithmic term in the regulation function in a way to obtain, in the absence of noise, an S-shaped growth law retaining the qualitative features of the logistic growth curve. The growth phenomenon is modeled as a diffusion process whose transition p.d.f. is obtained in closed form. Its steady state behavior turns out to be described by the lognormal distribution. The expected values and the mode of the transition p.d.f. are calculated, and it is proved that their time course is also represented by monotonically increasing functions asymptotically approaching saturation values. The first passage time problem is then considered. The Laplace transform of the first passage time p.d.f. is obtained for arbitrary thresholds and is used to calculate the expected value of the first passage time. The inverse Laplace transform is then determined for a threshold equal to the saturation value attained by the population size in the absence of random components. The probability of absorption for an arbitrary barrier is finally calculated as the limit of the absorption probability in a two-barrier problem.

Growth with regulation in random environment / R. M., Capocelli; Ricciardi, LUIGI MARIA. - In: KYBERNETIK. - ISSN 0023-5946. - STAMPA. - 15:3(1974), pp. 147-157. [10.1007/BF00274586]

Growth with regulation in random environment

RICCIARDI, LUIGI MARIA
1974

Abstract

The diffusion model for a population subject to Malthusian growth is generalized to include regulation effects. This is done by incorporating a logarithmic term in the regulation function in a way to obtain, in the absence of noise, an S-shaped growth law retaining the qualitative features of the logistic growth curve. The growth phenomenon is modeled as a diffusion process whose transition p.d.f. is obtained in closed form. Its steady state behavior turns out to be described by the lognormal distribution. The expected values and the mode of the transition p.d.f. are calculated, and it is proved that their time course is also represented by monotonically increasing functions asymptotically approaching saturation values. The first passage time problem is then considered. The Laplace transform of the first passage time p.d.f. is obtained for arbitrary thresholds and is used to calculate the expected value of the first passage time. The inverse Laplace transform is then determined for a threshold equal to the saturation value attained by the population size in the absence of random components. The probability of absorption for an arbitrary barrier is finally calculated as the limit of the absorption probability in a two-barrier problem.
1974
Growth with regulation in random environment / R. M., Capocelli; Ricciardi, LUIGI MARIA. - In: KYBERNETIK. - ISSN 0023-5946. - STAMPA. - 15:3(1974), pp. 147-157. [10.1007/BF00274586]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/159365
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact