This paper presents an application for modern star trackers aimed at the estimation of the spacecraft angular velocity vector on the basis of the star field images acquired during fast rotations, when star identification and tracking are not possible. Angular rates in the range 2–8°/s are considered, which strongly affect the characteristics of the acquirable images, in particular for shape and brightness. The procedure consists in the exploitation of the rigid motion equations to identify the rotation that best fits the observed star trajectories in the sensor field of view. Its coverage capability is analysed with reference to the sensitivity of state-of-the-art photodetectors. The probability of an adequate acquisition is shown to be 0.80 with random pointing and rotation axis over the celestial sphere. Firstly, the accuracy of the procedure is discussed in numerical tests. Then, end-to-end tests are reported, which have been operated by implementing the procedure in a hardware sensor model that acquires simulated star field scenes in a laboratory facility. Both the validations point out that the accuracy of 1°/s, suggested by the European Space Agency for this kind of application, has been achieved. Moreover, the rate of rotation about axes perpendicular to the boresight can be computed with accuracy one order of magnitude better.
A Procedure for Three-Dimensional Angular Velocity Determination Using a Star Sensor in High-Rate Rotation Modes / Accardo, Domenico; Rufino, Giancarlo. - In: ACTA ASTRONAUTICA. - ISSN 0094-5765. - STAMPA. - 48:(2001), pp. 311-320. [10.1016/S0094-5765(01)00013-3]
A Procedure for Three-Dimensional Angular Velocity Determination Using a Star Sensor in High-Rate Rotation Modes
ACCARDO, DOMENICO;RUFINO, GIANCARLO
2001
Abstract
This paper presents an application for modern star trackers aimed at the estimation of the spacecraft angular velocity vector on the basis of the star field images acquired during fast rotations, when star identification and tracking are not possible. Angular rates in the range 2–8°/s are considered, which strongly affect the characteristics of the acquirable images, in particular for shape and brightness. The procedure consists in the exploitation of the rigid motion equations to identify the rotation that best fits the observed star trajectories in the sensor field of view. Its coverage capability is analysed with reference to the sensitivity of state-of-the-art photodetectors. The probability of an adequate acquisition is shown to be 0.80 with random pointing and rotation axis over the celestial sphere. Firstly, the accuracy of the procedure is discussed in numerical tests. Then, end-to-end tests are reported, which have been operated by implementing the procedure in a hardware sensor model that acquires simulated star field scenes in a laboratory facility. Both the validations point out that the accuracy of 1°/s, suggested by the European Space Agency for this kind of application, has been achieved. Moreover, the rate of rotation about axes perpendicular to the boresight can be computed with accuracy one order of magnitude better.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.