We investigated in IMR90 cells the effects of N-formyl-Met-Leu-Phe (N-fMLP) and WKYMVm (W peptide) on activation of the NADPH oxidase-like enzyme. In serum-deprived human fibroblasts, exposure to 100 microM N-fMLP or 10 microM peptide W for 1 min induced both p47phox translocation and NADPH-dependent superoxide generation. These effects were in large part mediated by prevention of the rapid activation of extracellular signal-regulated kinases (ERKs) by preincubation with the MEK1 inhibitor PD098059. Furthermore, responses to N-fMLP or W peptide were inhibited by pertussis toxin, suggesting the involvement of a seven-transmembrane G protein-coupled receptor(s) for peptides. RT-PCR experiments demonstrated the expression in these cells of the low-affinity receptor FPRL1, but not the high-affinity receptor FPR. Incubation with radiolabeled WKYMVm, which had a higher efficiency on FPRL1, revealed that human fibroblasts express binding sites for 125I-WKYMVm that are specifically displaced by increasing concentrations of unlabeled ligand. Analysis of the binding data predicted a Kd of 155.99 nM and a receptor density of about 16,200 molecules/cell. HEK293 cells, which express a NADPH oxidase-like enzyme but not formyl peptide receptors, transiently transfected with FPRL1 cDNA produced superoxide on stimulation with N-fMLP or W peptide, demonstrating that this receptor is biologically functional.
Low-affinity receptor-mediated induction of superoxide by N-formyl-methionyl-leucyl-phenylalanine and WKYMVm in IMR90 human fibroblasts / Ammendola, Rosario; Russo, L; DE FELICE, C; Esposito, Franca; Russo, Tommaso; Cimino, Filiberto. - In: FREE RADICAL BIOLOGY & MEDICINE. - ISSN 0891-5849. - STAMPA. - 36/2:(2004), pp. 189-200. [10.1016/j.freeradbiomed.2003.]
Low-affinity receptor-mediated induction of superoxide by N-formyl-methionyl-leucyl-phenylalanine and WKYMVm in IMR90 human fibroblasts.
AMMENDOLA, ROSARIO;ESPOSITO, FRANCA;RUSSO, TOMMASO;CIMINO, FILIBERTO
2004
Abstract
We investigated in IMR90 cells the effects of N-formyl-Met-Leu-Phe (N-fMLP) and WKYMVm (W peptide) on activation of the NADPH oxidase-like enzyme. In serum-deprived human fibroblasts, exposure to 100 microM N-fMLP or 10 microM peptide W for 1 min induced both p47phox translocation and NADPH-dependent superoxide generation. These effects were in large part mediated by prevention of the rapid activation of extracellular signal-regulated kinases (ERKs) by preincubation with the MEK1 inhibitor PD098059. Furthermore, responses to N-fMLP or W peptide were inhibited by pertussis toxin, suggesting the involvement of a seven-transmembrane G protein-coupled receptor(s) for peptides. RT-PCR experiments demonstrated the expression in these cells of the low-affinity receptor FPRL1, but not the high-affinity receptor FPR. Incubation with radiolabeled WKYMVm, which had a higher efficiency on FPRL1, revealed that human fibroblasts express binding sites for 125I-WKYMVm that are specifically displaced by increasing concentrations of unlabeled ligand. Analysis of the binding data predicted a Kd of 155.99 nM and a receptor density of about 16,200 molecules/cell. HEK293 cells, which express a NADPH oxidase-like enzyme but not formyl peptide receptors, transiently transfected with FPRL1 cDNA produced superoxide on stimulation with N-fMLP or W peptide, demonstrating that this receptor is biologically functional.File | Dimensione | Formato | |
---|---|---|---|
FRBM.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
547.92 kB
Formato
Adobe PDF
|
547.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.