Dynamical instabilities in fluid mechanics are responsible for a variety of important common phenomena, such as waves on the sea surface or Taylor vortices in Couette flow. In granular media dynamical instabilities have just begun to be discovered. Here we show by means of molecular dynamics simulation the existence of a new dynamical instability of a granular mixture under oscillating horizontal shear, which leads to the formation of a striped pattern where the components are segregated. We investigate the properties of such a Kelvin-Helmholtz-like instability and show how it is connected to pattern formation in granular flow and segregation.

Shear instabilities in granular mixtures / PICA CIAMARRA, Massimo; Coniglio, Antonio; Nicodemi, Mario. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 94:(2005), pp. 188001-1-188001-3. [10.1103/PhysRevLett.94.188001]

Shear instabilities in granular mixtures

PICA CIAMARRA, Massimo;CONIGLIO, ANTONIO;NICODEMI, MARIO
2005

Abstract

Dynamical instabilities in fluid mechanics are responsible for a variety of important common phenomena, such as waves on the sea surface or Taylor vortices in Couette flow. In granular media dynamical instabilities have just begun to be discovered. Here we show by means of molecular dynamics simulation the existence of a new dynamical instability of a granular mixture under oscillating horizontal shear, which leads to the formation of a striped pattern where the components are segregated. We investigate the properties of such a Kelvin-Helmholtz-like instability and show how it is connected to pattern formation in granular flow and segregation.
2005
Shear instabilities in granular mixtures / PICA CIAMARRA, Massimo; Coniglio, Antonio; Nicodemi, Mario. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 94:(2005), pp. 188001-1-188001-3. [10.1103/PhysRevLett.94.188001]
File in questo prodotto:
File Dimensione Formato  
Shear.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 326.1 kB
Formato Adobe PDF
326.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/204390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact