The statistical properties of the autoregressive (AR) distance between ARIMA processes are investigated. In particular, the asymptotic distribution of the squared AR distance and an approximation which is computationally efficient are derived. Moreover, the problem of time series clustering and classification is discussed and the performance of the AR distance is illustrated by means of some empirical applications. © 2007 Elsevier B.V. All rights reserved.

Time series clustering and classification by the autoregressive metric / Corduas, Marcella; Piccolo, Domenico. - In: COMPUTATIONAL STATISTICS & DATA ANALYSIS. - ISSN 0167-9473. - STAMPA. - 52:4(2008), pp. 1860-1872. [10.1016/j.csda.2007.06.001]

Time series clustering and classification by the autoregressive metric

CORDUAS, MARCELLA;PICCOLO, DOMENICO
2008

Abstract

The statistical properties of the autoregressive (AR) distance between ARIMA processes are investigated. In particular, the asymptotic distribution of the squared AR distance and an approximation which is computationally efficient are derived. Moreover, the problem of time series clustering and classification is discussed and the performance of the AR distance is illustrated by means of some empirical applications. © 2007 Elsevier B.V. All rights reserved.
2008
Time series clustering and classification by the autoregressive metric / Corduas, Marcella; Piccolo, Domenico. - In: COMPUTATIONAL STATISTICS & DATA ANALYSIS. - ISSN 0167-9473. - STAMPA. - 52:4(2008), pp. 1860-1872. [10.1016/j.csda.2007.06.001]
File in questo prodotto:
File Dimensione Formato  
COMSTA3732_Corduas.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 190.4 kB
Formato Adobe PDF
190.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
COMSTA3732_Corduas.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 190.4 kB
Formato Adobe PDF
190.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/205133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 157
  • ???jsp.display-item.citation.isi??? 132
social impact